اثر انواع بیوچار غنی شده و باکتری‌های حل‌کننده فسفات بر فعالیت فسفاتازی و فراهمی فسفر خاک و رشد گندم در خاک شور اطراف دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیمی و حاصلخیزی خاک، دانشکده کشاورزی، گروه مهندسی علوم خاک، دانشگاه ارومیه

2 استاد گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

3 دانشیار گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

4 استادیار گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

شوری خاک به­طور منفی بر رشد و عملکرد گیاه تأثیر می­گذارد. با این وجود، پیش بینی می­شود که باکتری­های ریزوسفری محرک رشد گیاه (PGPRs) و استفاده از بقایای گیاهی به­صورت بیوچار رشد و توسعه گیاه در شرایط تنش­زا را تسهیل کند. بدین منظور برای ارزیابی تأثیر انواع بیوچار غنی شده و باکتری­های حل­کننده فسفات­ (PSB) بومی خاک­های شور اطراف دریاچه ارومیه بر فراهمی فسفر این خاک­ها، آزمایش فاکتوریل گلدانی در قالب طرح کامل تصادفی با دو نوع خاک شور (15=EC) و غیر شور (2 =EC) و انواع بیوچار غنی شده با اسیدفسفریک- سنگ فسفات (BC-H3PO4-RP)، اسیدکلریدریک-سنگ فسفات (BC-HCl-RP) ، سنگ فسفات - باکتری­های حل­کننده فسفات (BC-RP-PSB) و مصرف همزمان بیوچار- سنگ فسفات (BC-RP)، بیوچار – باکتری­های حل کننده فسفات (BC-PSB)، بیوچار معمولی (BC) و کود فسفاته (TSP) اجرا شد. پس از برداشت گیاه، وزن ماده خشک و غلظت فسفر گیاه، برخی ویژگی­های شیمیایی نظیر pH، قابلیت هدایت الکتریکی، فسفر اولسن و فعالیت فسفاتاز خاک­ها اندازه­گیری شد. در هر دو خاک، بیشترین عملکرد و فسفر گیاه در تیمارهای BC-H3PO4-RP ، BC-HCl-RP و BC-RP-PSB بدست آمد. بیشترین فعالیت فسفاتاز قلیایی در تیمار BC-RP-PSB و فسفاتاز اسیدی در تیمارهای  BC-H3PO4-RPو BC-HCl-RPاندازه­گیری شد. برخلاف EC، تیمارهای آزمایش pH خاک­ها را بطور معنی­داری کاهش دادند. به­طوری­که تیمار BC-H3PO4-RP به اندازه 1/1 واحد pH خاک S2 و 6/0 واحد pH خاک S1 و تیمار BC-HCl-RP 56/0 واحد pH خاک S1 و 16/1 واحد pH خاک S2 را کاهش دادند. غلظت فسفر اولسن در تیمار BC-H3PO4-RP و BC-HCl-RP برای خاک S1 به­ترتیب 7/58 و41 میلی­گرم در کیلوگرم برای خاک S2 4/67 و 6/38 میلی­گرم در کیلوگرم خاک بود. نکته جالب توجه اینکه، در هر دو خاک، غلظت فسفر اولسن در تیمارهای بیوچارهای غنی شده بویژه بیوچار غنی­شده با خاک فسفات و باکتری­های حل کننده فسفات (BC-RP-PSB)  نسبت به تیمار TSP بیشتر بود.این نتایج دور از انتظار بود بدین منظور پیشنهاد می­گردد برای مقایسه بهتر این کود با TSP و نیل به نتایج کاربردی­تر، تحقیقات تکمیلی و مطالعات مزرعه­ای طولانی مدت بیشتری انجام پذیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Various Enriched Biochars and PSB on Phosphatase Activity, Phosphorus Availability, and Wheat Growth in Saline Soils Around Lake Urmia

نویسندگان [English]

  • R. Mousavi 1
  • MirHassan Rasouli-Sadaghiani 2
  • Ebrahim Sepehr 3
  • M. Barin 4
1 PhD Student, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Soil ScieAssociate Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Irannce, College of Agriculture, Urmia University, Iran
4 Assistant Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

The productivity of plants is adversely affected by soil salinity. However, it is predicted that plant growth-promoting rhizosphere bacterial (PGPRs) and the use of crop residues as biochar can improve plant growth and development in the presence of salinity and different stresses. A pot experiment was performed in a complete randomized design using two soils with different EC (S1 = 2, S2 = 15 dSm-1). Treatments included different types of enriched biochar (BC) as rock phosphate-biochar (BC-RP), BC-H3PO4-RP, BC-HCl-RP, BC-PSB and BC-RP-PSB to assess the effects of apple-grape pruning biochar, enriched biochar, and phosphate-solubilizing bacteria (PSB) isolated from saline soils around Lake Urmia on the phosphorus (P) availability. After harvesting, soil physicochemical properties (pH, EC), P-Olsen, acid, and alkaline phosphatase activities, and plant growth indices were investigated. The results showed that in both soils, the highest alkaline phosphatase activity was in BC-H3PO4-RP and BC-HCl-RP treatments. In both soils, the highest plant dry matter was obtained in BC-H3PO4-RP and the highest plant P in BC-H3PO4-RP, BC-HCl-RP, and BC-RP-PSB treatments. Experimental treatments did not affect the soil EC but significantly reduced the pH of soils. Indeed, BC-H3PO4-RP reduced the pH of S2 and S1 soils by 1.1 and 0.6 units, respectively, while BC-HCl-RP reduced the pH of S1and S2 soils by 0.56 and 1.16 units, respectively. The P-Olsen concentration of S1 soil under BC-H3PO4-RP and BC-HCl-RP treatments were 57.7 and 41 mg kg-1and of S2 soil were 67.4 and 38.6 mg kg-1, respectively. Interestingly, in both soils, P-Olsen concentration in BC-RP-PSB treatment was more than TSP treatment, suggesting a remarkable ability of the studied bacteria. Since enriched biochar with various minerals and inoculation with PSBs showed an unexpectedly higher P-Olsen compared to TSP, more field studies are needed for supporting as well as clear understanding of P-enriched biochar potential in different soils and climates.

کلیدواژه‌ها [English]

  • saline soils
  • Phosphorus availability
  • Phosphate-solubilizing bacteria
  1. افشاری، م. رمضانپور، م. ضیاییان، ع.ح. موسوی فضل، م.ه. ذبیحی، ح.ر. 1396. بررسی اثر کاربرد کود شیمیایی و مواد آلی بر فعالیت آنزیم­های فسفاتاز اسیدی و قلیایی در برخی از خاک­های کشور. نشریه زیست شناسی خاک. 5: 175-184
  2. خوشرو، ب. ساریخانی، م. ر. علی اصغرزاده، ن. 1398. اثر تلقیح برخی کودهای میکروبی فسفاته بر شاخص­های تغذیه­ای گیاه ذرت (Zea mays L.). نشریه دانش آب و خاک. 29: 15-27
  3. رسولی صدقیانی، م.ح. واحدی، ر. برین، م. 1397. تأثیر بیوچار و کمپوست ضایعات هرس و تلقیح میکروبی بر فراهمی فسفر. نشریه آب و خاک (علوم و صنایع کشاورزی).4:709-722.
  4. فیضی اصل، و. و ا. بایبوردی.١٣٨٤ .تعیین نرم­های نظام تلفیقی تشخیص و توصیه (دریس) برای تشخیص وضعیت تغذیه­ای و مطالعه تعادل عناصر غذایی گندم آبی در استان آذربایجان شرقی. مجله علوم زراعی ایران، ٤ : ٣٠٩-٢٩٨
  5. گویلی،ا. موسوی، س ع ا و کامگار حقیقی، ع ا. 1396. ثر بیوچار کود گاوی بر ترکیب شیمیایی اسفناج رشد یافته در وضعیت­های رطوبتی مختلف در یک خاک آهکی. نشریه پژوهش­های خاک (علوم خاک و آب) 4 : 525-545
  6. شهبازی، ک. و ح. بشارتی. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک­های کشاورزی ایران. نشریه مدیریت اراضی. 1: 1-15
  7. Ashraf,  M. 1994. Breeding for salinity tolerance in plants, Crit. Rev. Plant Sci. 13: 17–42.
  8. Ashraf, M. P.Harris, 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16.
  9. Anwar, S.A. M. Ibrahim,  M. Ishaq,  N. Ahmed. 2004. Use of sulphuric acid on normal calcareous soils. In: Abstracts 10th Int. Congr. Soil Science Society of Pakistan. Tandojam.
  10. Arocena, J.M. C. Opio, 2003. Prescribed Fire- Induced Changes in Properties of Sub-Boreal Forest Soils. Geoderma, 113: 1-16.
  11. Anderson C.R. Condron L.M. Clough T.J. Fiers M. Stewart A. Hill R.A. Sherlock R.R. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54: 309– 320.
  12. Akhtar, S.S. M.N. Andersen, M.Naveed, Z.A. Zahir, F.Liu, 2015. Interactive effect ofbiochar and plant growth-promoting bacterial endophytes on ameliorating salinitystress in maize. Functional. Plant Biology. 42: 770–781.
  13. Bailey, V.L. Fansler, S.J. Smith, J.L. Bolton Jr. H.2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology. Biochemistry. 43:296–301.
  14. Bolandnazar S, Khorsandi S and Adlipoor M, 2013.The effect of bio-fertilizer (phosphate barvar2) on onion (Allium cepa L.) yield and quality. Journal of Agriculture and Sustainable Production, 24: 19-30.
  15. Chapman, H.D. 1965. Cation-exchange capacity. Agronomy 9: 891–901.
  16. Cabello M, Irrazabal G, Bucsinszhy AM, Saparrat M and Schalamuck S, 2005. Effect of an arbuscu lar mycorrhizal fungus, G. mosseae and a rocke-phosphate-solubilizing fungus, P.thomii on mentha piperita growth in a soilless medium. Journal of Basic Microbial, 45: 182- 189.
  17. Chen, X. G. Chen, L. Chen Y. Chen J. Lehmann, M.B. McBride, A.G. Hay. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology. 102:8877–8884
  18. Chia, C. H. B. P. Singh, S. Joseph, E. R. Graber, P. Munroe. 2014. Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108: 26-34.‏
  19. Dick, W. A. and Tabatabai, M. A. 1994. Significance and potential use of soil enzymes. Soil Microbial Ecology 14: 95-127
  20. Dahlawi, S. A.Naeem, Z. Rengel, R.Naidu. 2018. Biochar application for the remediation of salt-affected soils: challenges and opportunities. Science of the Total Environment. 625: 320–335.
  21. Eivazi, F. and Tabatabai, M. 1977. Phosphates in soils. Soil Biology and Biochemistry 9: 167-172
  22. Fang, J. L. Zhan, Y.S. Ok, B. Gao. 2018. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry. 57:15–21.
  23. Ghoularata, M. F.Raeisi, H. Nadian. 2008. Salinity and phosphorus interactions on growth yield and nutrient uptake by Berseem. Clover (Trifolium alexandrinum L.). I. Field Crops Research 6: 117-126
  24. Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal. 102: 623-633.
  25. Halford. I. C. R. (1979). Evaluation of Soil Phosphate Buffering Indices, Australian Journal Soil Research. 17. 495-504 .
  26. Hussain, R.A. R. Ahmad, E.A. Waraich, F. Nawaz. 2015. nutrient uptake, water relations, and yield performance of different wheat cultivars ( Triticum aestivum L.) under salinity stress. Journal of Plant Nutrition. 38:2139–2149.
  27. Lebaschy, M.H. and Sharifi Ashour Abadi, E. 2004. Application of physiological growth indices for suitable harvesting of Hypericum perforatum. Pajouhesh & Sazandegi J.65:65-75. (In Persian).
  28. Liang, B. J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'neill, J. Skjemstad, J. Thies, F. Luizao, J. Petersen. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of American Journal. 70: 1719–1730.
  29. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management- an introduction. In:Lehmann J. and Joseph S. (Eds). Biochar for environmental management: Science and Technology. Earths can, London, pp. 1–11.
  30. Lehmann, J. Rillig, M.C. Thies, J. Masiello, C.A. Hockaday,W.C. Crowley, D. 2011. Biochar effects on soil biota — a review. Soil Biology and Biochemistry. 43: 1812–1836.
  31. Lashari, M.S. Liu, Y. Li, L. Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X., Yu, X., 2013. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research. 144: 113–118.
  32. Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., Chen, W., 2017. Rice huskbiochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology. 116: 12–22.
  33. Jones, D.L. J. Rousk, G. Edwards-Jones, T.H. DeLuca, D.V. Murphy. 2012. Biochar mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry. 45: 113–124.
  34. Joseph SD et al (2010) An investigation into the reactions of biochar in soil. Soil Research. 48:501–515
  35. Joseph, S. E. R. .raber, C. Chia, P. Munroe, S. Donne, T. Thomas, S. Nielsen, C. Marjo, H. Rutlidge, G. X. Pan, L. Li, P. Taylor, A. Rawal, J. Hook. 2013. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components, Carbon Manage. 4: 323–343.
  36. Klute, A. 1986. Methods of soil analysis. Part I: physical and mineralogical methods. ASA, Inc. SSSA Inc. Madison, Wisconsin USA.
  37. Kim, K. H. J. Y. Kim, T. S. Cho, J. W. Choi. 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource technology. 118: 158-162.‏
  38. Kiss, S. Stefanic, G. Dragan-Bularda, M. 1974. Soil Enzymology in Romania. II. Contrib. Bot. Clul. 197–207.
  39. Nelson, R.E. 1982. Carbonate and gypsum. In : Page A.L., Miller R.H. , Keeney D.R. (eds), Methods of Soil Analysis. American  Society of Agronomy, Madis, WI, USA. pp. 181–197.
  40. Nelson, D.W. Sommers, L.E., Page, A.L., Miller, R.H. & Keeney, P.R. 1982. Totalcarbon, organic carbon and organic matter, Methods of Soil Analysis, Part 2, Chemical andmic-obiological properties. Soil Science Society of American. 539-580.
  41. Nannipieri P. Giagnoni L. Renella G. Puglisi E. Ceccanti B. Masciandaro G. Fornasier F. Moscatelli M.C.and Marinari S. 2012. Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils. 48:743–762
  42. Naidu R.  P. Rengasamy.  1993. Ion interactions and constraints to plant nutrition in Australian sodic soils. Australian Journal of Soil Research. 31: 801–819.
  43. Murphy J, Riley JD. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta. 27:31-36.
  44. Murphy, P.N.C. R.J. Stevens. 2010. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air and Soil Pollution. 212: 101–111.
  45. Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 333: 117–128.
  46. Olsen, S.R. & Sommers, L.E. 1982. Phosphorus. p. 403-430. In: A.L. Page, R.H. Miller,and D.R. Keeney (eds.) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  47. Shahbaz, M., M. Ashraf. 2013. Improving salinity tolerance in cereals. Critical Reviews in Plant Science. 32:237–249.
  48. Shen, Q. M. Hedley, M. Camps Arbestain, M. U. F. Kirschbaum. 2016. Can biochar increase the bioavailability of phosphorus?.Journal of  soil science and plant nutrition. 16: 268-286.‏
  49. Paz-Ferreiro, J. Gascó, G. Gutiérrez, B. Méndez, A. 2012. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of  Soils. 48:511–517.
  50. Tabatabai M.A. 1994. Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis. Part2 – Microbiological and biochemical properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, US, 775–833.
  51. Tejada, M. Garcia, C. Gonzalez, J.L. Hernandez, M.T. 2006. Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology and  Biochemistry. 38:1413-1421.
  52. Wu, H.P. C. Lai, G.M. Zeng, J. Liang,J. Chen, J.J. Xu, J. Dai, X.D. Li,J.F. Liu, , M. Chen, L.H. Lu, L. Hu, J. Wan. 2017. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical Reviews and Biotechnology. 37: 754–764.
  53. Sohi, S. P. E. Krull, E. Lopez-Capel, R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy. 105: 47-82.
  54. Sadeghi S, Heidari GHR and Sohrabi Y, 2015. Effect of biological fertilizer and fertilization management on some growth Indices of two maize varieties. Journal of Agricultural Science and Sustainable Production, 25(3): 43-60.
  55. Qadir, M. S. Schubert, A. Ghafoor, G. Murtaza. 2001. Amelioration strategies for sodic soils: A review. Land Degradation and Development. 12: 357–386.
  56. Qian, L. B. Chen. 2014. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. Journal of Agricultural and Food Chemistry. 62: 373–380.
  57. Raison, R.J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformation: A Review. Plant Soil. 51: 73-108.
  58. Wang, J. X. Pan, Y. Liu, X. Zhang, Z.Xiong. 2012. Effects of biochar amendment in twosoils on greenhouse gas emissions and crop production. Plant Soil. 360: 287–298.
  59. Watzinger A. Feichtmair S. Kitzler B. Zehetner F. Kloss S. Wimmer B. Boltenstern S.Z. and Soja G. 2014. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analysis: results from a short term incubation and pot experiment. European Journal of Soil Science 65: 40–51.
  60. Xiang. Zhao, Ta Na. Sh, Dong Wang Xu. 2017 Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies, 10, 1293;
  61. Yao, L.Z. Wu,Y. Zheng,I. Kaleem,C. Li. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology. 46:49–54.
  62. Zhai, L. Z., CaiJi,  J.,  Liu, H.Wang , T. Ren,  Gai,  X. Liu, H. 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils. 51: 113-122.‏
  63. Zia, M.H. A. Ghafoor, T.H. Saifullah M. Boers.  2006. Comparison of sulphurous acid generator and alternate amendments to improve the quality of saline-sodic water for sustainable rice yields. Paddy Water Environment. 4: 153–162