اثر افزایش شوری آب آبیاری در روند توسعه ترک‌های ناشی از خشک‌شدگی در خاک‌های شالیزاری

نویسندگان

1 کارشناس طرح‌های توسعه منابع آب شرکت سهامی آب منطقه‌ای گیلان

2 استادیار پژوهش موسسه تحقیقات خاک و آب

3 استادیار پژوهش موسسه تحقیقات برنج کشور

4 دانشیار گروه مهندسی آب دانشگاه تبریز

چکیده

خشکسالی‌های متعدد سال‌های اخیر و نیز ساخت و بهره‌برداری از سدهای متعدد در حوضه آبریز رودخانه سپیدرود کمیت و کیفیت (افزایش شوری) آب این رودخانه را که منبع اصلی تأمین آب استان گیلان می‌باشد، به طور محسوسی کاهش داده است. پیش‌بینی می‌شود در سال‌های آتی با افزایش فاصله آبیاری در هر تناوب، بروز ترک به دلیل نوع و محتوای بالای رس خاک‌های شالیزاری استان گیلان اجتناب‌ناپذیر وهدر رفت آب در خاک‌های ترک‌دار یکی از مهم‌ترین مشکلات مطرح باشد. از سوی دیگر شور شدن آب آبیاری نیز بر خواص فیزیکی مرتبط با انقباض خاک و توسعه ترک مؤثر است. در مطالعه حاضر روند ترک‌برداری خاک‌های شالیزاری با سطوح شوری 2، 3، 4 و 5 دسی‌زیمنس بر متر در اثر خشک‌شدگی در آزمایشگاه و در مزرعه بدون حضور گیاه برنج و با استفاده از منحنی مشخصه انقباض مورد بررسی قرار گرفت. نتایج نشان داد تغییر حجم خاک با انقباض عمودی (نشست) آغاز شده و بروز ترک در همه تیمارها در رطوبت نزدیک به اشباع (50 تا 55 درصد وزنی برای خاک مورد مطالعه) رخ می‌دهد. هم‌چنین کلوخه‌های ایجاد شده در سطح خاک همه تیمارها شکل‌های هندسی منظم داشتند. با افزایش شوری خاک متوسط پهنا و عمق ترک‌ها افزایش یافت، به گونه‌ای که در پایان دوره آزمایش در تیمار با شوری 5 دسی‌زیمنس بر متر متوسط عرض و عمق ترک به ترتیب 5 و 17 سانتی‌متر بود. بنابراین در صورتی که سخت لایه شخمی از ضخامت کافی برخوردار باشد، عمق ترک منجر­به شکاف در سخت لایه شخمی نخواهد شد. در این شرایط هدر رفت آب از راه نفوذ عمقی حداقل خواهد بود، اما نفوذ جانبی آن قابل ملاحظه است. روند تغییرات شاخص شدت ترک در طول دوره خشک‌شدگی نشان داد که تیمار با شوری 2 دسی‌زیمنس بر متر کم‌ترین مقدار توسعه ترک‌ها را داشت و با افزایش مقدار شوری این شاخص افزایش نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Increasing Salinity of Irrigation Water on Trend of Shrinkage Cracking Development in Paddy Fields

نویسندگان [English]

  • F. Salahshour Dalivand 1
  • N. Davatgar 2
  • M. R. Yazdani 3
  • A. H. Nazemi 4
  • A. A. Sadradini 4
چکیده [English]

In the recent years, frequent droughts and construction and operation of different dams in the Sepidroud River watershed have markedly decreased water quality (increase salinity) and quantity of the river which is the most important water supply resources in Guilan province. It is predicted that in the next years, due to increasing intervals between irrigations, crack development will be inevitable due to the type of clay and its high content in Guilan paddy soils. Therefore, the loss of water in cracking soils is going to be considered as one of the most important problems. Besides, increase in irrigation water salinity affects soil physical properties associated with the soil shrinkage and crack developments. In this study, shrinkage cracking processes were investigated in laboratory using paddy soils, in the absence of rice plants, with 2, 3, 4 and 5 dSm-1salinity levels using shrinkage characteristic curve. The results showed that change in soil volume started with vertical subsidence and crack initiated at a moisture content almost close to saturation (50% to 55% gravimetric water). Also, the shape of aggregated was orthogonal. At higher soil salinity levels, the mean width and depth of cracks increased. At the end of the experiment, average width and depth of 5 dSm-1treatment were 4.9 and 16.6 cm, respectively, . In desiccation period, the trend of crack index changes showed that 2 dSm-1treatment had the lowest crack development and this factor increased by increasing soil salinity.

کلیدواژه‌ها [English]

  • crack
  • Desiccation of soil
  • Crack index
  • Soil shrinkage
  1. بغدادی، م. 1377. بررسی خاک‌های شمال ایران (استان گیلان)، طرح تهیه نقشه جامع خاک‌های ایران. وزارت کشاورزی. سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات خاک و آب. نشریه فنی 1045.
  2. دوات‌گر، ن.، کاوسی، م.، علی‌نیا، م.ح. و پیکان، م. 1384. بررسی وضعیت پتاسیم و اثر خواص فیزیکی و شیمیایی خاک برآن در شالیزارهای استان گیلان. مجله علوم و فنون کشاورزی و منابع طبیعی. 9 (4)87-71.
  3. طاحونی، ش. 1389. اصول مهندسی ژئوتکنیک (جلد اول)، مکانیک خاک. پارس آئین. 831.
  4. کاوسی، م. 1378. مطالعه عوامل مؤثر در جذب پتاسیم از خاک توسط گیاه برنج و تعیین عصاره‌گیر مناسب برای پتاسیم در برخی از شالیزارهای گیلان. رساله دکتری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
  5. محمدی، م. 1349. گزارش خاکشناسی تفضیلی مزرعه نمونه طرح بهبود برنج. موسسه خاکشناسی و حاصلخیزی خاک، استان گیلان، نشریه شماره 269، 60 ص.
  6. Albercht, B.A., and C.H. Benson. 2001.Effect of desiccation on compacted natural clay. Journal of Geotechnical and Geo-environmental Engineering, 127(1):67-75.
  7. Allaire, S.E., S. Roulier and A.J. Cessna. 2009. Quantifying preferential flow in soils: a review of different technique. Journal of Hydrology, 378, 179-204.
  8. Atique, A., and Sanchez, M. 2011. Analysis of cracking behavior of draying soil.2ndintetnational conference on environmental science and technology.IPCBEE vol.6.IACSIT press, Singapore.
  9. Bandyopadhyay, K.K., M. Mohanty, D.K. Painuli, A.K. Misra, K.M. Hati, K.G. Mandal, P.K. Ghosh, R.S. Chaudhary and C.L. Acharya. 2003. Influence of tillage practices and nutrient management on crack parameters in a vertisol of Central India. Soil Tillage Res., 71(2): 133-142.
  10. Barbour, M.G., J.H. Burk, W.D. Pitts, F.S. Gillian and M.N. Schwartz. 1998. Terrestrial Plant Ecology. Benjamin/Cummings. Menlo Park, California.
  11. Boivin, P., P. Garnier and D. Tessier. 2004. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J.68:1145-1153.
  12. Bronswijk, J.J.B. 1991. Relation between vertical soil movements and wate-content changes in cracking clays. Soil Science Society of American Journal, 55(5): 1220-1226.
  13. Bronswijk, J.J.B., and J.J. Evers-vermeer. 1990. Shrinkage of Dutch clay soil aggregates. Neth. J. Agric. Sci. 38, 175,194.
  14. Cabidoche, Y.M., and H. Ozier-Lafontain. 1995. Therese: I:matric water content measurements through thickness variation in Vertisols. Agricultural Water Management, 28(2):133-147.
  15. Corte, A., and A. Higashi. 1960. Experimental research on desiccation cracks in soil. Research report 66, U.S. Army Snow Ice and Permafrost Research Establishment. Wilmette, Illinois.
  16. Crescimanno, G., G. Provenzano and H.W.G. Booltink. 2002. The effect of alternating different water qualities on accumulation and leaching of solutes in Mediterranean cracking soil. Hydrol. Processes 16:717-730.
  17. Cui, Y.J., Y.F. Lu, P. Delage and M. Riffard. 2005. Field simulation of in-situ water content and temperature changes due to ground-atmospheric condition. Geotechnique, 55(7):557-567.
  18. Dasog, G.S., and G. B. Shashidhara. 1993. Dimension and volume of crack in a vertisol under different crop covers. Soil Sci. 156:424-428.
  19. Dasog, G., D. Acton, A. Mermut and E.De Jong. 1988. Shrink-swell potential and cracking in clay soils of Saskatchewan. Canadian Journal of Soil Science, 68:251-260.
  20. Dinka, T.M., and R.J. Lascano. 2012. Review paper: challenges and limitation in studying the shrink-swell and crack dynamics of vertisol soils. Open Journal of Soil Science, 2:82-90, doi:10.4236/ojss.2012.22012.
  21. Grismer, M.E.1992. Cracks in irrigated clay soil may allow some drainage. California Agriculture, 46(5):9-11.
  22. Hanson, B., S.R. Grattan and A. Fulton. 1999. Agricultural Salinity and Drainage. University of California Irrigation Program.University of California, Davis.
  23. Miller, C.J., H. Mi and N. Yesiller. 1998. Experimental analysis of desiccation crack propagation in clay liner. Journal of American Water Resources Association, 34(3): 677-686.
  24. Lal, R. and A. Shukla. 2004. Principles of soil physics. Marcel Dekker, Inc. NewYourk.pp 716.
  25. Min, T.N., and Vo, D.N. 2007. A simple model of shrinkage cracking development for Kaolinite.Journal of the KGS. 23(9):29-37.
  26. Min, T.N., and Vo, D.N. 2008. A graphical method for evaluation of stages in shrinkage cracking using S-shape curve model.Journal of the KGS. 24(9):41-48.
  27. Mohamed, M.A. and Mustafa, M.A. 2000. Shrinkage of vertisols as affected by clay content, salinity and sodicity. U. of k. J. Agric. Sci. 8(1):14-25.
  28. Montes, G.H. 2005. Swelling-shrinkage measurements of benthonic using coupled environmental scanning electron microscopy and digital image analysis. J. Colloid Interface Sci. 284:271-277.
  29. Morris, P.H., J. Graham and D.J. Williams. 1992. Cracking in drying soils. Canadian Geotechnical Journal, 29:263-277.
  30. Pauchard, L., F. Parisse and C. Allain. 1999. Influence of salt content on crack patterns formed through colloidal suspension desiccation. The American Physical Society Journal, 59(3): 3737-3740.
  31. Peng, X., R. Horn, S. Peth and A. Smucker. 2006. Quantification of soil shrinkage in 2D by digital image processing of soil surface. Soil Tillage Res., 91(1-2): 173-180.
  32. Phogat, V., A.K. Yadav and R.S. Malik. 2010. Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water. Paddy water Environ. 8:333-346.
  33. Prat, P.C., A. Ledesma and M.R. Lakshmikantha. 2006. Size effect in the cracking of drying soil. In: Gdoutos, E.E. (Ed.), Proceeding of 16th European Conference of Fracture, Springer.
  34. Rhoades, J.D., S.M. Lesch, S.L. Burch, J. Letey, R.D. LeMert, P.J. Shouse, J.D. Oster and T.H. O'Halloran. 1997. Salt distribution in cracking soils and salt pickup by runoff water. Journal of Irrigation and Drainage Engineering, 123(5): 323-328.
  35. Peron, H., Herchel, T., Laloui, L. and Hu, L.B. 2009. Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanism identification. Canadian Geotechnic Journal, 46:1177-1201.
  36. Stewart, R.D. 2013.Characterization of hydrologic parameters and processes in shrink-swell clay soils. A dissertation of doctor philosophy.Oregon State University.
  37. Strik, G. 1954. Some aspects of soil shrinkage and the effect of cracking upon water entry into the soil. Australian Journal of Agricultural Rsearch, 5(2): 279-29.
  38. Tang, C.S., B. Shi, C. Liu, L. Zhao and B.J. Wang. 2008. Influencing factors of geometrical structure of surface shrinkage cracks in clay soils. Engineering Geology, 101:204-217.
  39. Tang, C.S., B. Shi, C. Liu, W.B. Suo and L. Gao. 2011b. Experimental characterization of shrinkage and desiccation cracking in thin clay layer.Applied Clay Science J. 52:69-77.
  40. Tang, C.S., Y.J. Cui, A.M. Tang and B. Shi. 2010. Experimental evidence on the temperature dependence of desiccation cracking behavior of clayey soils.Engineering Geology, 114:261-266.
  41. Tang, C.S., Y.J. Cui, B. Shi, A.M. Tang and C. Liu. 2011a. Desiccation and cracking behavior of clay layer from slurry state under wetting-draying cycles. Geoderma J. 166:111-118.
  42. Vogel, H.J., H. Hofmann and K. Roth. 2005. Studies of crack dynamics in clay soil I. Experimental methods, results and morphological quantification. Geoderma, 125:203-211.
  43. Weinberger, R. 1999. Initiation and growth of cracks during desiccation of stratified muddy sediments. Journal of Structural Geology, 21: 379-386.
  44. Wijeyesekera, D.C. and M.C. Papadopoulou. 2001. Cracking in clays with an image analysis perspective. Clay Science for Engineering, Adachi &Fukue (eds) Balkema, Rotterdam, ISBN 90 5809 175 9, pp. 437-482.
  45. Wilding, L.P. and D. Tessier. 1998. Genesis of vertisol shrink-swell phenomena. In: L.P. Wilding and R. Puentes, Eds., Vertisols: Their distribution, properties, classification, and management. Texas A&M University Printing Center, College Station, 55-79.
  46. Wilson, C.E., T.C. Keisling, D.M. Miller, C.R. Dillon, A.D. Pearce, D.L. Frizcell and P.A. Counce. 2000. Tillage influence on soluble salt movement in silt loam cropped to paddy rice. Soil Science Society of America Journal, 46:1771-1776.
  47. Youshida, S., and Adachi, K. 2001.Effects of cropping and puddling practices on the cracking patterns in paddy fields.Soil Sci. Plant Nutr. 47(3):519-532.
  48. Zabat, M., M. Vayer-Besancon, R. Harba, S. Bonnamy and H. Van Damme. 1997. Surface topography and mechanical properties of smectite films. Progress in Colloid and Polymer Science. Springer, Berlin, 96-102.