ارزیابی پراکنش مکانی سرعت نفوذ آب و ارتباط آن با برخی از ویژگی‌های فیزیکی و شیمیایی خاک در منطقه کوهین

نویسندگان

1 دانش آموخته کارشناسی ارشد دانشگاه گیلان

2 دانشیار دانشگاه گیلان

3 دانشیار دانشگاه تهران

چکیده

در پژوهش حاضر تغییرات مکانی سرعت نفوذ آب با اندازه­گیری نفوذپذیری به روش استوانه­های مضاعف در 33 نقطه به فواصل 50 متری در طول زمین­نمایی با شیب متوسط 1/6 درصد در اراضی دیم در منطقه کوهین بررسی شد. در زمان انجام آزمایش، نمونه­های سطحی (15-0 سانتی­متر) خاک به صورت مرکب جمع­آوری گردید. چگالی توده خاک، پایداری خاکدانه، مقدار رطوبت اولیه، اجزاء بافت، ماده­آلی و کربنات کلسیم معادل اندازه­گیری شدند. برآورد پارامترهای معادلات نفوذپذیری با استفاده از داده­های صحرایی انجام شد. برای بررسی وضعیت تغییرات مکانی و برازش بهترین مدل از روش زمین­آمار و رسم تابع نیم­تغییرنما استفاده شد. نتایج حاکی از وابستگی مکانی اغلب ویژگی­های مورد بررسی در منطقه مورد مطالعه بود. کربنات کلسیم با مقدار 17/0 درصد اثر قطعه­ای، بالاترین وابستگی مکانی را نشان داد. سرعت نفوذ نهایی و پارامتر A معادله فیلیپ دارای وابستگی مکانی قوی، ضریب a معادله کوستیاکوف دارای وابستگی مکانی متوسط، و پارامتر S معادله فیلیپ و ضریب b معادله کوستیاکوف دارای اثر قطعه­ای تام بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability of Infiltration Rate and Its Relationship with Some Soil Physical and Chemical Properties in Kuhin Region

نویسندگان [English]

  • M. Nikghalbpour 1
  • H. Asadi 2
  • M. Gorji 3
چکیده [English]

In this study, spatial variability of infiltration rate was investigated on a landscape of 6.1 percent slope in Kuhin region. Infiltration rate was measured by double-rings infiltrometer at 33 points of 50-meter intervals along the landscape. Composite soil samples (0-15 cm) were collected during the infiltration experiments. The soil samples were analyzed for bulk density, aggregate stability, initial soil moisture content, textural fractions, organic matter and calcium carbonate equivalent. To investigate the spatial variability and fitting the best model, geostatistical methods were used by variogram analysis. Most of the measured properties showed spatial dependence. The content of calcium carbonate equivalent showed the strongest spatial dependence by 0.17 percent nugget effect. Final infiltration rate and parameter A of Philip's equation showed strong spatial dependence, coefficient a of Kostiakov's equation showed moderate spatial dependence, and S parameter of Philip's equation and b coefficient of Kostiakov's equation showed pure nugget effect.

کلیدواژه‌ها [English]

  • Geostatistic
  • Infiltrometer
  • Landscape
  • Philip equation
  • Kostiakov equation
  • Semivariogram
  1.  

87

 
  1. افشار، ح.، م.ح. صالحی، ج. محمدی و ع.م. محنت­کش. 1388. تغییرپذیری مکانی ویژگی­های خاک و عملکرد گندم آبی در یک نقشه تناسب کمی (مطالعه موردی: منطقه شهر کیان، استان چهار و محال بختیاری). مجله آب و خاک (علوم و صنایع کشاورزی)، جلد 23، شماره 2، صفحه: 175-161.
  2. فروغی­فر، ح.، ع.ا. جعفرزاده، ح. ترابی گلسفیدی، ن.ع. اصغرزاده، ن. تومانیان و ن. دواتگر. 1390. تغییرات مکانی برخی ویژگی­های فیزیکی و شیمیایی خاک سطحی در شکل­های اراضی مختلف دشت تبریز. نشریه دانش آب و خاک، جلد 21، شماره 3، صفحه: 20-1.
  3. کرمی، ع.، م. همایی، م. بای­بوردی، م. محمودیان شوشتری و ن. دوات­گر. 1391. پراکنش مکانی پارامترهای نفوذ آب به خاک در مقیاس ناحیه­ای. نشریه دانش آب و خاک، جلد 22، شماره 1، صفحه: 31-17.
  4. کلکلی، م.، ع. کریمی، غ. م. حق­نیا، ع. اسفندیارپور. 1393. مقایسه زمین­آماری و مرسوم در تعیین تغییرات برخی از ویژگی­های خاک سطحی (مطالعه موردی: جیرفت، استان کرمان). نشریه آب و خاک (علوم وصنایع کشاورزی)، جلد 28، شماره 2، خرداد-تیر، صفحه: 364-353.
  5. متقیان، ح.م.، ا. کریمی و ج. محمدی. 1387. تجزیه و تحلیل تغییرات مکانی برخی از ویژگی­های فیزیکی و هیدرولیکی خاک در مقیاس حوزه آبخیز. مجله آب و خاک (علوم و صنایع کشاورزی)، جلد 22، شماره 2، صفحه: 446-432.
  6. Asadi, H., A. Raeisvandi, B. Rabiei, and H. Ghadiri. 2012. Effect of land use and topography on soil properties and agronomic productivity on calcareous soils of a semiarid region, Iran. Land Degradation and Development, 23: 496-504.
  7. Balasundram, S.K., M.H.A. Husni, and O.H. Ahmed. 2008. Application of geostatistical tools to quantify spatial variability of selected soil chemical properties from a cultivated tropical peat. Journal of Agronomy, 7(1): 82-87.
  8. Bevington, J., D. Piragnolo, P. Teatini, G. Vellidis, and F. Morari. 2016. On the spatial variability of soil hydraulic properties in a Holocene coastal farmland. Geoderma 262: 294–305.
  9. Biox-Fayos, C., A. Calvo-Cases, A.C. Imeso, and M.D. Soriano-Soto. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena, 44: 47-67.
  10. Bouajila, A., and T. Gallali. 2008. Soil organic carbon fractions aggregate stability in carbonated and no carbonated soils Tunisia. Journal of Agronomy, 7: 127-137.
  11. Buczko, U., S. Bachmann, M. Gropp, G. Jurasinski, and S. Glatzel. 2015. Spatial variability at different scales and sampling requirements for in situ soil CO2 efflux measurements on an arable soil. Catena 131: 46–55.
  12. Cambardella, C.A., T.B. Moorman, J.M. Novak, T.B. Parkin, D.L. Karlen, R.F. Turco, and A.E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58: 1501-1511.
  13. Cohen, M.J., E.J. Dunne, and G.L. Bruland. 2008. Spatial variability of soil properties in cypress domes surrounded by different land uses. Wetlands 28: 411–422.
  14. Cotler, H., and M.P. Ortega-Larrocea. 2006. Effect of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena, 65: 107-117.
  15. Dingman, S.L. 2002. Physical Hydrology. 2nd ed. Ed Prentice-Hall Inc., USA, pp. 220-271.
  16. Ersahin, S. 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67: 1848-1855.
  17. Gardner, W.H. 1986. Water Content. p. 493-544. In: A. Klute (ed.) Methods of Soil Analysis. Part 1. 2nd ed. Physical and Mineralogical Methods. Agronomy. Monogr. No. 9. ASA and SSA, Madison,WI.
  18. Gregory, J. H., M. D. Dukes, G. L. Miller, and P. H. Jones. 2005. Analysis of double-ring infiltration techniques and development of a simple automatic water delivery system. Online, Applied Turfgrass Science Doi: 10.1094/ATS-2005-0531-01-MG.
  19. Grossman, R.B., and T.G. Reinsch. 2002. Bulk density and linear extensibility. p. 202-228. In J.H. Dane and G.C. Topp (eds.) Methods of soil analysis. Part 4. Physical methods. Soil Science of America Book Series, No. 5. ASA and SSSA, Madison, WI.
  20. Haghighi, F., M. Gorji, and M. Shorafa. 2010. A study of the effects of land use change on soil physical properties and organic matter. Land Degradation and Development, 21(5): 496-502.
  21.  
  22. Huang, M., J.D. Zettle, S. Lee Barbour, and D. Pratt. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma, 262: 285-293.
  23. Iqbal, J., J.A.Thomasson, J.N. Jenkins, P.R Owens, and F.D. Whisler. 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69: 1338-1350.
  24. Kostiakov, A.N. 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for the purposes of amelioration. In: Transactions of the 6th Commission of the International Society of Soil Science, Moscow, Russia, pp. 17-21.
  25. Liu, Z., W. Zhou, J. Shen, P. He, Q. Lei, and G. Liang. 2014. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235-236: 39-47.
  26. Mallants, D., B. Mohanty, A. Vervoot, and J. Feyen. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technol. 10: 115–131.
  27. Meek, B.D., E.R. Rechel, L.M. Carter, W.R. DeTar, and A.L. Urie. 1992. Infiltration rate of a sandy loam soil: Effect of traffic, tillage, and plant roots. Soil Science Society of America Journal, 56: 908-913.
  28. Mubarak, I., R. Angulo-Jaramillo, J. C. Mailhol, P. Ruelle, M. Khaledian, and M. Vauclin. 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management 97: 1517–1526.
  29. Najafian, A., M. Dayani, H.R. Motaghian, and H. Nadian. 2012. Geostatistical assessment of the spatial distribuition of some chemical properties in calcareous soils. Journal of Integrative Agriculture, 11(10): 1729-1737.
  30. Nielsen, R., and O. Wendroth. 2003. Spatial and temporal statistics (Sampling field soils and their vegetation). Germany: Geoscience publisher.
  31. Nimmo, J.R., and K.S. Perkins. 2002. Aggregate stability and size distribution. p. 317-328. In A.D. Warren (ed.) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Journal, Inc.
  32. Papanicolaou, A.N., M. Elhakeem, C.G. Wilson, C.L. Burras, L.T. West, H. Lin, B. Clark, and B.E. Oneal. 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma 243–244: 58–68.
  33. Papiernik, S.K., M.J. Linstorm, J.A. Schumacher, A. Farenhorst, K.D. Stephens, T.B. Schumacher, and D.A. Lobb. 2005. Variation in soil properties and crop yield across an eroded prairie landscape. Journal of Soil and Water Conservation, 60(6): 388-395.
  34. Philip, J.R. 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84: 257-264.
  35. Sepaskhah, A.R., S.H. Ahmadi, and A.R. Nikbakht Shahbazi. 2005. Geostatistical analysis of sorptivity for a soil under tilled and no-tilled conditions. Soil and Tillage Research, 83(2): 237-245.
  36. Sharma, M.L., G.A. Gander and C.G. Hunt. 1980. Spatial variability of infiltration in a watershed. Journal of Hydrology, 45: 101-122.
  37. Sparks, D. 1996. Methods of Soil Analysis. Part ш. Chemical Methods. SSSA book Series, No. 5. Soil Science Society of America, Madison, WI.
  38. Wang, J., B. Fu, Y. Qiu, and L. Chen. 2001. Soil nutrients in relation to land use and landscape position in semi-arid small catchment of the loess plateau in China. J. Arid Environ. 48: 537–550.
  39. Wilding, L.P., and L.R. Drees. 1983. Spatial variability and pedology In: L.P. Wilding, E. Smeck, and G. F. Hall, (ed.) Pedogenesis and Soil Taxomomy: 1. Concepts and interactions. Elsevier, New York, p. 83-116.
  40. Xin Z., Y. Qin, and X. Yu. 2016. Spatial variability in soil organic carbon and its influencing factors in ahilly watershed of the Loess Plateau, China. Catena 137: 660–669.
  41. Xiong, Z., S. Li, L. Yao, G. Liu, Q. Zhang, and W. Liu. 2015. Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecological Engineering 83: 437–443.
  42. Zimmermann, A., D. Schinn, T. Francke, H. Elsenbeer, and B. Zimmermann. 2013. Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flowcontrolled landscape. Geoderma 196: 1–11.
  43. Zolfaghari, Z., Sh. Ayoubi, and M.R. Mosaddeghi. 2015. Spatial variability of some soil shrinkage indices in hilly calcareous ergion of western Iran. Soil and Tillage Research., 150: 180-191.