بررسی تغییرات مکانی و پهنه‌بندی برخی خواص فیزیکی و شیمیایی خاک سطحی و تأثیرپذیری آنها از مدیریت بهره‌برداری در زمین‌های کشاورزی جنوب تهران

نویسندگان

1 دانشیار گروه مهندسی علوم خاک دانشگاه شاهد

2 استادیار موسسه تحقیقات خاک و آب کشور

3 دانش آموخته کارشناسی ارشد خاکشناسی دانشگاه شاهد

چکیده

گسترش مناطق مسکونی، تجاری، صنعتی و نوع استفاده از زمین در اراضی کشاورزی جنوب تهران، تغییر در برخی ویژگی­های فیزیکی و شیمیایی را به محیط خاک تحمیل نموده است. برای انجام این تحقیق نمونه­برداری به صورت شبکه منظم 1000 در 1000 متر در 196 نقطه از عمق 30-0 سانتی متری خاک  در 20000 هکتار از اراضی کشاورزی جنوب تهران انجام شد. اسیدیته گل اشباع، بافت خاک، درصد آهک، گنجایش تبادل کاتیونی و کربن آلی خاک اندازه‌گیری و تجزیه و تحلیل داده‌ها و تهیه نقشه آن‌ها با استفاده از سامانه اطلاعات جغرافیایی (GIS) و روش درون‌یابی کریجینگ انجام شد. نتایج نشان داد که  3/26 و 6/54 درصد از اراضی به ترتیب دارای کربن آلی کمتر از 9/0 و 2/1- 9/0 درصد هستند. اراضی دارای کربن آلی کمتر از 9/0 درصد، عمدتاً جزء کاربری‌های زراعی، مسکونی، صنعتی و بایر و اراضی دارای کربن آلی 2/2-9/0درصد زیر کشت انواع محصولات سبزی و صیفی قرار دارند. به غیر از 9/29درصد از اراضی، که متأثر از پساب‌ها، دارای پ­هاش بیشتر از 8 هستند، بقیه مناطق در محدوده 5/7 الی 8 می‌باشند. حدود 81 درصد اراضی دارای 5 الی 15 درصد آهک و 6/78 درصد از اراضی دارای گنجایش تبادل کاتیونی 20 الی 35 سانتی مول بار بر کیلوگرم هستند. بهترین مدل واریوگرام برازش داده شده برای کربن آلی، اسیدیته گنجایش تبادل کاتیونی و آهک، مدل کروی، برای رس و سیلت، نمایی و برای شن، گوسی بود. استفاده از پسآب، کشاورزی متراکم و مدیریت خاص کشت انواع محصولات سبزی و صیفی روی ویژگی­های خاک مورد مطالعه مؤثر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability and Mapping of Some Physico-Chemical Properties in Surface Soils and Influence of Land Use Management on Them in Agricultural Lands South of Tehran

نویسندگان [English]

  • H. Torab 1
  • N. Davatgar 2
  • Sh. Ghasemi 3
چکیده [English]

Development of residential, commercial, and industrial areas and agricultural land use in sSouth of Tehran has, have caused changes in some physical and chemical properties in the soil environment. In this research, 196 soil samples were collected at depth of 0-30 cm, at 1000×1000m grids in 20000 ha agricultural lands of Ssouthern of Tehran. Soil texture, pH, calcium carbonate, cation exchange capacity, and organic carbon were measured. Geostatical analysis and, interpolation of soil properties by kriging and mapping were carried out by GS+ and ArcGIS software. Results showed that 26.3% and, 54.6% of lands were containeding of less than 0.9% and 0.9- to 1.2% of organic carbon, respectively. A lLands containing less than 0.9% of organic carbon is are often cultivated crops, residential areas, and barren lands. The land containings of 0.9-2.2% organic carbon is often cultivated to vegetables crops. Except the 29.9% of which lands which were affected by industrial waste water with a pH greater than 8, the remaining of lands have had a pH of 7.5 to 8.  About 81% of the lands have had 5% to 15% lime and 78.6% of the lands have had a CEC of 20-35 cmolc kg-1. In this study, spherical models were fitted for organic carbon, pH, CEC, and lime. Exponential models were fitted for clay and silt and Gaussian model for sand. Use ofing wastewater, intensive agriculture, and specific management, especially for cultivation of vegetable crops, were had significant effects on soil properties.

کلیدواژه‌ها [English]

  • Spherical models
  • Exponential models
  • Kriging
  • Organic carbon
  • CEC
  1. جعفری، م.، ح. عسگری، م. معظمی، م. بی نیازی و م. طهمورث. 1387.بررسی توزیع مکانی برخی از خصوصیات خاک با کاربرد روش‌های زمین آماری. مجله پژوهش و سازندگی در زراعت و باغبانی.شماره80، 191-177.
  2. جعفریان، ز.، م. کارگر و ج. قربانی. 1389. بررسی تغییرپذیری برخی خصوصیات خاک تحت تأثیر تاج پوشش و تراکم بوته های درمنه کوهی (مطالعه موردی: مراتع واوسر کیاسر). مجله علوم کشاورزی و منابع طبیعی. جلد 64. شماره 1، 24-13.
  3. حبشی ه.، م. حسینی، ج. محمدی و ر. رحمانی. 1385. کاربرد تکنیک زمین آمار در مطالعه خاک­های جنگلی. مجله علوم کشاورزی و منابع طبیعی. جلد چهارم، شماره اول، 10-1.
  4. حسنی پاک، ا . 1386 . مبانی زمین آمار ، انتشارات دانشگاه تهران.
  5. سرمدیان ف.، ر. تقی­زاده مهرجردی. 1388. بررسی کارایی روش های زمین آماری به منظور پهنه بندی برخی از ویژگی های خاک در منطقه اخترآباد. نشریه مرتع و آبخیز داری ایران. دوره62 شماره 3، 388-377.
  6. محمدی، ج.، 1385. پدومتری (آمارمکانی)، جلد دوم، انتشارات پلک، تهران، 453 صفحه.
  7. Bernard, U.L and U. Boguslaw. 2002. Spatial variability of soil particle size distribution in Poland. 17th p 14-21 August, Thailand.
  8. Cambardella, C.A., T.B. Boorman, J.M. Novak, T.B. Parkin, D.L. Karlen, R.F. Turco, and A.E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58: 1501-1511.
  9. Dercon, G, J. Deckers, G. Govers, J. Poesen, H. Sánchez, R. Vanegas, M. Ramırez, and G. Loaiza.2003. Spatial variability in soil properties on slow-forming terraces in the Andes region of Ecuador. Soil & Tillage Research 72, 31–41.
  10. Duffera, M., J.G. White and R. Wesiz. 2006. 2007. Spatial variability of Southeastern U.S. Coastal Plain soil physical properties: Implications for site-specific management. Geoderma 137:327-339.
  11. Gallardo, A. 2003. Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems, 6: 564-576.
  12. Gee, W.G., and O. Dani. 1996. Particle size analysis, p475-490. In G.S. Campbell, et al. (Eds.), Methods of Soil Analysis. Part 4, Physical methods. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  13. Iqbal, J., J.A. Thomasson, J.N. Jenkins, P.R. Owens, and F. D. Whisler. 2005. Spatial variability analysis of soil Physical properties of alluvial soils. Soil Sci. Soc. Am. J. 69:1-14.
  14. Izadi, E., M.H. Rashed, E. Mohassel, E.Z. Nassiri and A. Lakzian. 2008. Evaluation of soil texture and organic matter on Atrazine degradation. Environmental Science, Vol.5, No.4, 53-64.
  15. Liu N., G.M. Bond, A. Abel, B.J. McPherson and J. Stringer. Biometric sequestration of CO2 in carbonate forms: Role of produced waters and other brines. Fuel Process Techno. 86:1615-1625.
  16. Loeppert, R.H., and D.L. Suarez. 1996. Carbonate and Gypsum, p 437-490. In D.W. Nelson, et al. (Eds.), Methods of Soil Analysis. Part 3, Chemical methods. Pub. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  17. McBratney, A.B., M.L. Mendonca, B. Minasny. 2003. Digital soil mapping, Geoderma 117:3-52.
  18. Nael, M., H. Khademi, and M.A. Hajabbasi. 2004. Response of soil quality indicators and their spatial variability to land degradation in central Iran, Applied Soil Ecology 27: 221-232.
  19. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter, 961-1010.  In D.W. Nelson, et al. (Eds.), Methods of Soil Analysis. Part 3, Chemical methods. Pub. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  20. Panagopoulos, T., J. Jesus, M.D.C. Antunes and J. Beltrao. 2006. Analysis of spatial interpolation for optimizing management of salinized field cultivated with lettuce, European J.of Agronomy 24: 1-10.
  21. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids, p 417-435. In D.W. Nelson, et al. (Eds.), Methods of Soil Analysis. Part 3, Chemical methods. Pub. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  22. Robinson, T.P. and G. Metternicht. 2005. Testing the performance of spatial interpolation techniques for mapping soil properties. Elsevier B.V. All rights reserved.doi:10.1016/j. compag.
  23. Saldana, A., A. Stein, and J.A. Zinck. 1998. Spatial variability of soil properties at different scales within three terraces of the Henares River (Spain). Catena, 33. 139–153.
  24. Stark, C.E., L.M. Condron, A. Stewart, H.J. Di, and M. Callaghan. 2004. Small scale spatial variability of selected soil biological properties, Soil biology and Biochemistry.36:601-608.
  25. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficient, 1201-1229. In D.W. Nelson, et al. (Eds.), Methods of Soil Analysis. Part 3, Chemical methods. Pub. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  26. Thomas, G.W. 1996. Soil pH and soil acidity, 475-490. In D.W. Nelson, et al. (Eds.), Methods of Soil Analysis. Part 3, Chemical methods. Pub. by: Soil Sci. Soc. of Am., Inc. Madison, Wisconsin, USA.
  27. Trangmar, B.B., R.S. Yost and G. Uehara.1985. Application of geostatistics to spatial studies of soil properties. Advanced. Agr. Vol. 38, 45-94.
  28. Webster, R. and M.A. Oliver. 2001. Geostatistics for environmental scientists. John Wiley and Sons, Brisbane, Australia.