بررسی تغییرات مکانی عناصر غذایی در خاک و برگ تاکستان‌های شهرستان خدابنده با استفاده از روش‌های زمین آمار

نویسندگان

1 استادیار و عضو هیئت علمی بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

2 کارشناس ارشد آبیاری و زهکشی، محقق بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

3 کارشناس ارشد خاکشناسی، محقق بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

4 کارشناس ارشد باغبانی، محقق بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

چکیده

بهره­برداری صحیح از منابع موجود در بخش کشاورزی با بررسی روابط بین گیاه، خاک و عوامل محیطی مؤثر بر آن امکان پذیر است. بررسی الگوی تغییرات مکانی عناصر غذایی در خاک و گیاه و تهیه نقشه­های پراکنش آن­ها راهکاری اثربخش در راستای توسعه کشاورزی پایدار است. در این راستا در پژوهش حاضر به بررسی ساختار مکانی عناصر غذایی فسفر، پتاسیم، روی، مس، منگنز و بور در خاک و برگ و عنصر نیتروژن در برگ و کربن آلی در خاک با استفاده از مدل­های نیم تغییر­نما در تاکستان­های شهرستان خدابنده در استان زنجان پرداخته شد. پس از تهیه بهترین مدل نیم تغییر­نما با استفاده از روش­های میان­یابی شامل کریجینگ، کوکریجینگ و وزن­دهی عکس فاصله با توان­های 1-5 و روش کرنل عناصر برآورد و نقشه­های پهنه­بندی تهیه گردید. نتایج نشان داد بیشتر ویژگی­ها در گروه خاک و برگ تاکستان­ها از پیوستگی مکانی متوسط به بالایی برخوردار هستند. بیشترین شعاع همبستگی در نمونه­های خاک به عنصر منگنز و در نمونه­های برگ به عنصر فسفر تعلق داشت. به طور میانگین دامنه شعاع همبستگی در عناصر خاک بیشتر از عناصر برگ بود. نتایج حاصل از ارزیابی روش­های میانیابی با آماره­های خطاسنجی ریشه میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE) و ضریب کارایی(EF) بیان­گر برتری روش کوکریجینگ در برآورد عناصر خاک و برگ تاکستان­های مورد مطالعه بود. بهترین برآورد با روش کوکریجینگ در عنصر روی در خاک و در نمونه­های برگ هم در عنصر روی با روش کرنل بدست آمد. همچنین نتایج بررسی پراکنش عناصر غذایی در خاک و برگ منطقه مورد مطالعه نشان داد که بیشتر خاک­های تاکستان این منطقه از لحاظ کربن آلی، فسفر، آهن و روی کمبود دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating Spatial Variation of Nutrients Content in Soils and Leaves in Vineyards of Khodabande Using Geostatistical Methods

نویسندگان [English]

  • M. Taheri 1
  • S. Vahedi 2
  • M. Abasi 3
  • T. Khoshzaman 3
  • E. Sohrabi 4
1 PhD. Researcher. Assistant Professor in Soil and Water Research Department ,Zanjan Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
2 M.Sc. Irrigation and Drainage, Researcher of Soil and Water Research Department ,Zanjan Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
3 M.Sc. Soil Sc., Researcher of Soil and Water Research Department ,Zanjan Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
4 M.Sc, Horticulture, Researcher of Soil and Water Research Department ,Zanjan Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
چکیده [English]

Proper exploitation of available resources in agriculture is possible by examining relationships between plants, soil, and environmental factors. Effective strategy for the development of sustainable agriculture requires maps of the spatial variability of soil nutrients and plant distribution. In this context, the present study is to evaluate the spatial structure with Semi-variogram models in nutrient: P, K, Zn, Cu, Mn, and B in the soil and leaves as well as leaf nitrogen and organic carbon in the soil in vineyards of Khodabande in Zanjan Province. After preparing the Best Semi-variogram model, zoning maps were prepared by using geostatistical methods such as Kriging and Co-Kriging also IDW (powers: 1 to 5) and Kernel model of the interpolation methods. Results showed most of parameters in soil and the leaves in vineyards had high coefficients of variation. Soil content of Mn and P in leaves samples had the highest correlation radius. The nutrients in soil samples had higher average correlation radii than those of leaves. The results of the evaluations by geostatistical and interpolation methods with root mean square error (RMSE) values, mean absolute error (MAE) and efficiency coefficient showed that the Co-Kriging had the best performance for estimating hydraulic properties and Co-Kriging for soils and vineyards leaves nutrients. The best estimates were obtained with Co-Kriging in soil Zn and Kernel method showed similar results for leaves Zn. The results of the spatial variation of soil and leaf nutrients in the area showed that most of the vineyards were deficient in soil organic carbon, phosphorus, iron, and zinc.

کلیدواژه‌ها [English]

  • Interpolation
  • Semi-variogram
  • Spatial Variability
  1. ایوبی، ش. خرمالی، ف. 1387. تغییرپذیری مکانی عناصر غذایی قابل استفاده در خاک سطحی به کمک آنالیز مؤلفه­های اصلی و تکنیک زمین آمار ،مطالعه موردی در منطقه آپایپولی، ایالت آندراپرادش هند. علوم و فنون کشاورزی و منابع طبیعی. 46: 609- 620.
  2. بی­نام. 1387. دستورالعمل تجزیه­های آزمایشگاهی نمونه­های خاک و آب. نشریه شماره 467. وزارت جهاد کشاورزی، موسسه تحقیقات خاک و آب.
  3. حسنی_پاک،ع. ا. 1392. زمین آمار (ژئواستاتیستیک)، انتشارات دانشگاه تهران، 328 ص.
  4. علی احیایی، م. و بهبهانی زاده،ع. 1372. شرح روش­های تجزیه شیمیایی خاک، انتشارات موسسه تحقیقات خاک و آب، نشریه 893، 127ص.
  5. ملکوتی، م. ج. مشیری، ف و غیبی، م. ن.a1384. حد مطلوب غلظت عناصر غذایی در خاک و برخی از محصولات زراعی و باغی.نشریه فنی شماره 407. موسسه تحقیقات خاک و آب. انتشارات سنا، تهران، ایران.
  6. ملکوتی م. ج. مشیری، ف و غیبی، م. ن. b1384. شناخت ناهنجاری­های تغذیه ای، تعیین معیارهای کیفی و حد مطلوب غلظت عناصر غذایی در میوه­های تولیدی در خاک­های آهکی ایران. موسسه تحقیقات خاک و آب، وزارت جهاد کشاورزی، چاپ اول، انتشارات سنا، تهران، ایران.
  7. واحدی،س. زارع ابیانه، ح. طاهری، م. و بهمنی، ا. 1392. بررسی تغییرات مکانی برخی ویژگی­های شیمیایی و هیدرولیکی اراضی حاشیه رودخانه قزل اوزن با روش­های زمین آمار. پژوهش آب ایران، 7 (12):141-150
  8. .Aggelopoulou, K. D., D. Pateras., S. Fountas., T. A. Gemtos., and G. D. Nanos. 2011. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precision Agric. 12:118–129.
  9. Araujo e Silva Ferraz, G., F. M. Silva., M.C. Alves., R. F. Bueno., and P. A. N. Costa. 2012. Geostatistical analysis of fruit yield and detachment force in coffee. Precision Agric. 13:76–89.
  10. Baoa, Z., W. Wu., H. Liu., S. Yin., and H. Chen. 2014. Geostatistical analyses of spatial distribution and origin of soil nutrients in long-term wastewater-irrigated area in Beijing, China. ActaAgriculturaeScandinavica, Section B – Soil and Plant Science. 64: 235–243.
  11. Burgess, T.M,.and R. Webster. 1980. Optimal interpolation and is arithmic mapping of soil properties. I: The semi-variogram and punctual kriging. Soil Sci. 31: 315-333.
  12. Cambardella, C.A., T.B. Moorman., J.M. Novak., T.B. Parkin., D.L. Karlen., R. F. Turco., and A.E. Konopka. 1994. Field- scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am, 58: 1501-1511.
  13. Chai, T., and Draxler, R. R. 2014. Root mean square error (RMSE) or mean absolute error (MAE) Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7: 1247–1250.
  14. Cristianini, N., and J. Shawe-Taylor. 2000. An introduction to support vector machines and other kernel-based learning methods, 1st Ed., Cambridge University Press, Cambridge.
  15. Cui, B., W.Yang., M. Feng., W. Huang., X. Song. 2013. Study on the Spatial − Temporal Variability of Soil Nutrients during Winter Wheat Growth Season. International Federation for Information ProcessingAICT. 393: 238–247.
  16. Ersahin, S. 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. J. Soil Sci. Soc. Am, 67: 1848-1855.
  17. Gouri, K. B., and R.AJohnson . 1997. Statistical Concepts and Methods.ISBN:978-0471-07204-1
  18. Gupta, N., R.P. Rudra., and G. Parkin. 2006. Analysis of spatial variability of hydraulic conductivity at field scale. 2006. Canadian Biosystems Engineering, 48(1):55-62.
  19. Hagen-Thorn, A., K. Armolaitis., I. Callesen.,and I. Stjernquist. 2004. Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites, Annals of Forest Science, 61: 489-498.
  20. Lopez-Granados, F., M. Jurado-Exposito., S. Atenciano., A. Garcıa-Ferrer., M. Sanchez de la Orden., and L. Garcıa-Torres. 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil 246: 97–105.
  21. Mani, M., Shivaraju, C., and Narendra Kulkarni, S. 2014. The Grape Entomology. Springer, ISBN 978- 81- 322- 1617- 9 (eBook),pp: 202.
  22. Mudrak, E. L., Schafer, J.L., Fuentes-Ramirez, A., Holzapfel, C., and Moloney, K.A. 2014. Predictive modeling of spatial patterns of soil nutrients related to fertility islands. Landscape Ecol. 29:491–505.
  23. Shapiro, S. S.; Wilk, M. B. 1965. "An analysis of variance test for normality (complete samples)". Biometrika 52 (3–4): 591–611.
  24. Shukla, M.K., R. Lal., L. B. Owens., and P. Unkefer. 2003. Land Use and Management Impacts on Structure and Infiltration Characteristics of Soils in the North Appalachian Region of Ohio Soil Science. 3: 167–177.
  25. Silverman,B.W. 1986. Density Estimation for Statistics and Data Analysis, Chapman and Hal.
  26. Sun, B., S. Zhou., and Q. Zhao. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma. 115: 85-99.
  27. Trangmar, B.B, R. S. Yost,.andG. Uehara. 1985. Application of geostatistics to spatial studies of soil properties. AdvAgron 38: 45–94.
  28. Webster, R., and M. A. Oliver. 2001. Geostatistics for Environmental Scientists. London, UK: John Willey and Sons Ltd.
  29. Xu, G., Z. Li., P. Li., T. Zhang., and S. Cheng. 2014. Spatial variability of soil available phosphorus in a typical watershed in the source area of the middle Dan River, China. Environ Earth Sci. 71:3953–3962.
  30. Zhang, S., T. Huffman., X. Zhang., W. Liu., and Z. Liu. 2014. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. Soils Sediments. DOI 10.1007/s11368-014-0935-z
  31. Zhao, Y., H. Han., L. Cao., and  G. Chen. 2012. Study on Soil Nutrients Spatial Variability in Yushu City. International Federation for Information Processing AICT. 369: 1–7