اثر فناوری نگهداری آب زیر سطحی، خاکپوش و کیفیت آب آبیاری بر عملکرد ذرت در خاک شنی در کرمان

نویسندگان

1 دکتری تخصصی بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات آموزش و ترویج کشاورزی، کرمان، ایران

2 دانشیار گروه مهندسی علوم خاک، دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، ایران

چکیده

کمبود ذخیره آب قابل استفاده برای گیاه در خاک­های شنی، بزرگ­ترین مانع غیر زنده رشد پایدار گیاه است. آبیاری تکمیلی بدون عملیات حفاظت آب در خاک، وقت گیر بوده و نیاز به آموزش­های اضافی دارد. لذا استفاده از تکنولوژی­های جدید برای استفاده بهینه از آب ضرورری می­باشد. فناوری نگهداری آب زیر سطحی (SWRT) یک روش جدید است که باعث بهبود نگهداری آب در خاک­های شنی می­شود. این تحقیق به منظور بررسی اثر عمق کارگذاریSWRT، مالچ سطحی و کیفیت آب آبیاری بر ارتفاع و عملکرد ذرت در منطقه کرمان انجام شد. این مطالعه به صورت طرح پایه بلوک­های کامل تصادفی و در قالب آزمایش فاکتوریل با سه تیمار شامل:(1) عمق کارگذاری غشاء نگهدارنده آب (عدم کارگذاری، کارگذاری در عمق 40، 60 و متناوب 40 و 60 سانتی­متری)، (2) مالچ سطحی کاه و کلش (عدم کاربرد مالچ و کاربرد 4 تن در هکتار مالچ) و (3) شوری آب آبیاری (قابلیت هدایت الکتریکی 5/1 و 5/3 دسی زیمنس بر متر) با سه تکرار بود. تمامی قطعات آزمایشی در خردادماه 1392 و 1394 تحت کشت ذرت قرار گرفتند. ارتفاع ذرت در پایان زمان رشد و وزن هزار دانه و عملکرد ذرت پس از برداشت محصول در آبان ماه هر سال اندازه­گیری شد. نتایج نشان داد که کارگذاری غشاء­های نگهدارنده آب در منطقه ریشه سبب افزایش معنی­دار رشد و عملکرد ذرت در خاک شنی شد. بیشترین ارتفاع و عملکرد ذرت در تیمار کارگذاری غشاء در عمق 60 سانتی­متر بدست آمد. همچنین براساس نتایج بدست آمده اضافه نمودن مالچ کاه و کلش نیز سبب افزایش تأثیر غشاء­های نگهدارنده آب بر عملکرد ذرت (89/33 درصد) شد و با افزایش شوری آب آبیاری عملکرد 7/33%، وزن هزار دانه 13/29%و ارتفاع بوته ذرت 35/15 درصد کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Subsurface Water Retention Technology, Mulch, and Water Quality on Yield of Corn in Sandy Soil in Kerman

نویسندگان [English]

  • M. Amirpour robat 1
  • M. Shrafa 2
1 PhD of Soil Science, Kerman Agricultural Natural resources research and education center
2 Associate Professor, University of Tehran
چکیده [English]

Soil water deficits and associated plant water stresses comprise the greatest abiotic hindrance to sustainable plant growth. Supplemental irrigation without water conservation prac­tices is time consuming, and requires additional training. Thus, using new technologies is necessary for optimum water use efficiency. Subsurface water retention technology (SWRT) is a new method which improves characteristics of highly permeable sandy soils. Therefore, this study was established to investigate the effect of the SWRT, mulch, and water quality on height, 1000 grain weight, and yield of maize in an arid region of Kerman, Iran. This field study was performed in a complete randomized block design and factorial arrangement with three treatments: i) depths of polyethylene membrane sheets (without membrane installation, membrane installation at depths of 40, 60, and alternately 40 and 60 cm), ii) application of surface straw mulch (0 and 4 t.ha-1), and iii) irrigation by saline water (1.5 and 3.5 dS.m-1). All treatment plots were put under maize cultivation in June 2013 and 2015. The height of corn at the end of growth and 1000 grain weight and yield were measured after harvest in November each year. Results demonstrated that installing SWRT membranes below plant root zones substantially increased corn growth and production in the sandy soil. The maximum height and yield of corn were observed in the treatment with membrane depth at 60 cm. Based on the results of this research, application of mulch caused increase in yield (33.89 %) in SWRT treatment, while the increase in water salinity level decreased 1000 grain weight (29.13 %), height (15.35%), and yield of corn (33.7%).

کلیدواژه‌ها [English]

  • Irrigation water quality
  • Straw mulch
  • Saline water
  1. بی­نام. 1391. دستورالعمل فنی ذرت (دانه­ای و سیلویی)، وزارت جهاد کشاورزی. معاونت امور تولیدات گیاهی. دفتر محصولات اساسی غلات، حبوبات و نباتات علوفه­ای.
    بی­نام. 1392. تحلیل وضعیت آب و هوایی استان در سال 92. سازمان هواشناسی کشور، نشریه داخلی اداره کل هواشناسی استان کرمان، مرکز تحقیقات هواشناسی کاربردی استان کرمان. 33 ص.
    لیاقت، ع.، پ. مشهوری نژاد و ا. پذیرا، ا. 1378. کنترل قابلیت هدایت الکتریکی و آب مصرفی گیاه با استفاده از آبیاری زیرزمینی لوله­ای و پوشش گیاهی روی سطح خاک. مجموعه مقالات هشتمین سمینار سراسری آبیاری و کاهش تبخیر، دانشگاه شهید باهنر کرمان. ص 108-100.
    نجفی نژاد، ح. و م. حسام الدین. 1382. اثر رژیم­های مختلف آبیاری و تراکم کاشت بر عملکرد دانه و برخی خصوصیات زراعی ذرت. مجله نهال و بذر. جلد 19 شماره 2. ص 172-155.Al-Dhuhli, H.S., S.A. Al-Rawahy, and S. Prathapar. 2010. Effectiveness of mulches to control soil salinity in sorghum fields irrigated with saline water. A monograph on management of salt-affected soils and water for sustainable agriculture, Sultan Qaboos University, pp. 41-46.
    Amer, K. H. 2010. Corn crop response under managing different irrigation and salinity levels. Agricultural Water Management 97, 1553-1563.
    Amirpour M., M. Shorafa, M. Gorji, and H. Naghavi. 2016. Effect of subsurface water retention using polyethylene membranes with surface mulch and irrigation on moisture, temperature and salinity of sandy soil of arid region in Iran. AES Bioflux, 8(1), 33-41.
    Aragüés, R., E.T. Medina, A. Martínez-Cob, and J.Faci. 2014. Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard. Agricultural Water Management 142: 1-9.
    Basso, B., M. Bertocco, L. Sartor, and E. C. Martin. 2007. Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. European Journal of Agronomy 26, 82–91.
    Bezborodova, G.A., D.K. Shadmanovb, R.T. Mirhashimovb, T. Yuldashevc, A.S. Qureshi, A.D. Noblee, and M. Qadir. 2010. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agriculture, Ecosystems and Environment 138: 95–102.

    1. Chen, S.Y., X.Y. Zhang, D. Pei, H.Y. Sun, and S.L. Chen. 2007. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain.  Annals of Applied Biology 150(3): 261-268.
    2. Demirel, K., and Y. Kavdir. 2012. Effect of soil water retention barriers on turfgrass growth and soil water content. Journal of Irrigation Science.DOI 10.1007/s00271-012-0345-1.
    3. Deshmukh, Y.K., J. Sinha, G. Sinha, and P. Dev Verma. 2013. Efect of mulches and level of irrigation on soil temperature, soil moisture depletion and crop yield for Bottele gourd. International Journal of Applied Engineering and Technology ISSN: 2277-212X 3(3): 29-35.
    4. Ismail, S.M., and K. Ozawa. 2006. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Tenth International Water Technology Conference, IWTC10, Alexandria, Egypt, pp. 797- 811.
    5. Jordán, A., L.M. Zavala, and J. Gil. 2010. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. CATENA 81(1): 77-85.
    6. Katerji, N., J. W. Hoorn, A. Hamdy, and M. Mastrorilli. 2004. Comparison of corn yield response to plant water stress caused by salinity and by drought. Agricultural Water Management  62(2), 95–101.
    7. Li, S., S.Z. Kang, L. Zhang, S. Ortega-Farias, F. Li, and T. Du. 2013. Measuring and modeling maize evapotranspiration under plastic film-mulching condition. Journal of Hydrology, 503: 153–168.
    8. Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Methods of soil analysis. Part 2, American Society of Agronomy, Inc. Modison, Wisconsin, USA.
    9. Reyes, C., J. A. Perez-de-los, F. J. Amoros Ortiz-Villajos, , S. Garcia Navarro, C. Bravo Martin-Co nsuegra, D. Sanches Jimenez, and R. Chocano Eteson Jimenez-Ballesta. 2011. Changes in water retention properties due to the application of sugar foam in red soils. Agricultural Water Management 98(12), 1834-1839.
    10. Smucker, A. J. M., A. K. Guber, B. Basso, and Y. Kavdir. 2014a. Optimization of soil water content in the root zone. Soil Science Society of America Journal (in review).
    11. Smucker, A.J. M., Y. Kavdir, and W. Zhang. 2014b. Root zone soil water retention technology: a historic review and modern potential. Soil Science Society of America Journal (in review).
    12. Smucker, A.J.M., and B. Basso. 2014. Global Potential for a New Subsurface Water Retention Technology- Converting Marginal Soil into Sustainable Plant Production. In: The Soil Underfoot: infinite possibilities for a finite resource, Editors; G. J. Churchman and E.R. Landa. Chapter 24, pp. 315 – 324. CRC Press.
    13. Sumner, M. E. 1971. Asphalt barriers to improve productivity of sandy soil- A preliminary assessment. Proceedings of the South African Sugar Technologists' Association, 165- 168.
    14. Wiedenfeld, B. 2008. Effects of irrigation water salinity and electrostatic water treatment for sugarcane production. Agricultural Water Management 95(1), 85-88.
    15. Zhang, Q., Sh. Wang, L. LI, M. Inoue, J. Xiang, and G. Qiu. 2014. Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines. Agricultural Water Management 143, 1-8.
    16. Zhao, Y., H. Pang, J. Wang, L. Huo, and Y. Li. 2014. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research. 161. 16-25.
    17. Yang, Z., Smucker, A. J. M., Jiang, G., Ma, X., 2012. Influence of the membranes on water retention in saturated homogeneous sand columns. International Symposium on Water Resource and Environmental Protection (ISWREP), X’ian City, China, 1590–1593. 978-1-61284-340 7/111©2012IEEE.