اثر زئولیت و منبع نیتروژن بر کاهش آبشویی نیتروژن از یک خاک آهکی زیر کشت ریحان در شرایط گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

تاکنون اثر اصلاح­کننده­ی زئولیت که برای بهبود ویژگی­های فیزیکو-شیمیایی خاک و افزایش راندمان مصرف نیتروژن و کاهش تلفات آن استفاده می­شود برآبشویی نیتروژن حاصل از منابع مختلف نیتروژن بررسی نشده است. بنابراین در پژوهش حاضر،تأثیر کاربرد 4 سطح زئولیت کلینیپتولیت (0، 15،30 ، 45 گرم در کیلوگرم خاک) بر آبشویی نیتروژن حاصل از تیمارهای کودی مختلف (بدون کود (شاهد) و مقادیر 150 میلی­گرم نیتروژن در کیلوگرم خاک از سه منبع اوره، سولفات آمونیوم و کلات نیتروژن) در یک خاک آهکی تحت کشت گیاه ریحان ((Ocimum basilicum سبز اردستانی در شرایط گلخانه انجام شد. در چهار مرحله زه­آب گلدان­ها جمع­آوری شد و غلظت نیترات زه­آب و مقدار آمونیوم، نیترات و نیتروژن کل خاک پس از برداشت گیاه اندازه­گیری شد. کاربرد سطوح 15، 30 و 45 گرم زئولیت سبب افزایش میانگین غلظت آمونیوم خاک به­ترتیب به­میزان 16%، 13% و 22 درصد و میانگین غلظت نیترات به­ترتیب به­میزان 50%، 130% و 170 درصد در مقایسه با شاهد شد. کاربرد سطوح 30 و 45 گرم زئولیت نیز سبب افزایش میانگین غلظت نیتروژن کل خاک به­ترتیب به­میزان 42% و 28 درصد در مقایسه با شاهد شد (هرچند افزایش 28 درصدی از نظرآماری معنی­دار نبود). تنها کاربرد 45 گرم زئولیت نیترات زه­آب در مراحل مختلف را به­طور معنی­داری کاهش داد. میزان آمونیوم، نیترات و نیتروژن کل در خاک­های تیمار شده با کلات نیتروژن بیش از سایر منابع کودی مورد استفاده بود. همچنین نیترات زه­آب خروجی در همه مراحل در خاک­های تیمار شده با کلات نیتروژن به­طور معنی­داری کمتر از سایر کود­ها بود. به­طور کلی زئولیت سبب نگهداشت بیشتر و آبشویی کمتر نیتروژن شد. از میان تیمارها، کاربرد 45 گرم زئولیت و کلات نیتروژن اثر بیشتری بر نگهداشت نیتروژن در خاک و کاهش آبشویی آن داشتند. بنابراین توصیه می­شود پس از انجام آزمایش­های تکمیلی در مزرعه، درصورت تایید نتایج این آزمایش گلخانه ای، تیمارهای مناسب برای کاربرد در مزرعه استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Zeolite and Nitrogen Sources on Nitrogen Leaching from a Calcareous Soil under Ocimum basilicum Planting and Greenhouse Conditions

نویسندگان [English]

  • S. Kavyan 1
  • A. A. Moosavi 2
  • Z. Bolhasani 1
  • S. Sharareh 1
1 M.Sc. student, Department of Soil Science, College of Agriculture, Shiraz University
2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University
چکیده [English]

The effect of zeolite as a soil conditioner that is used for improving physico-chemical soil properties, improving nitrogen use efficiency, and decreasing nitrogen losses has not been studied on leaching of nitrogen from different sources. Therefore, this study was conducted as a factorial greenhouse experiment using a completely randomized design with 3 replications. The objective was to evaluate the effect of 4 levels of zeolite (0, 15, 30 and 45 g zeolite kg-1 soil) on leaching of nitrogen from different nitrogen fertilizers (control and application of 150 mg N kg-1 soil from urea, ammonium sulfate and nano- N- fertilizer) in a calcareous soil under Ocimum basilicum (var. Green Ardestani) planting. At 4 stages, the leachate of experimental pots was collected and nitrate concentration was determined. After harvesting, ammonium, nitrate, and total nitrogen concentrations of postharvest soils were also determined. Application of 15, 30 and 45 g zeolite kg-1 soil increased ammonium concentration of soil by 16%, 13%, and 22 %, and nitrate concentration by 50%, 130%, and 170 % as compared to control, respectively. Application of 30 and 45 g zeolite kg-1 soil increased total nitrogen concentration by 42% and 28 %, respectively. Among the applied levels of zeolite, only application of 45 g zeolite kg-1 soil significantly decreased nitrate concentration in leachates at different stages.  The amount of ammonium, nitrate, and total nitrogen were the highest for soils that received nano-N- fertilizer. Furthermore, nitrate concentration in leachate at different stages was the least when soils received nano-N- fertilizer. In general, zeolite increased nitrogen retention from the studied fertilizers and resulted in lower nitrate leaching through soils. Among the studied treatments, application of 45 g zeolite kg-1 soil and using nano- N- fertilizer were the most effective in nitrogen retention and decreasing nitrogen in leachate.  Therefore, it is recommended that these treatments be used in field conditions if complementary field trials confirm the results of this greenhouse experiment. 

کلیدواژه‌ها [English]

  • Basil
  • Nitrogen from leachate
  • Ammounium sulfate
  • Urea
  • Clinoptilolite
  • Nano-nitrogen fertilizer
  • Nitrate
  1. صادقی لاری، ع.، ه. معاضد، ع. ر. هوشمند و م. چرم. ۱۳۸۹ . تأثیر کاربرد زئولیت سدیمی بر نگهداشت نیترات و آمونیوم در یک خاک اشباع لوم سیلتی. علوم و مهندسی آبیاری (مجله علمی کشاورزی)، جلد 3۳، شماره 1، صفحات 31 تا 43.
  2. صالحی ورنوسفادرانی، ب. 1392. اثر کاربردزئولیت و ماده آلی بر برخی ویژگی‌های فیزیکی،شیمیایی و هیدرولیکی خاک. پایان نامه کارشناسی ارشد، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز
  3. عابدی کوپایی، ج.، ف. موسوی و آ. معتمدی. ۱۳۸۹ . بررسی تأثیر کاربرد زئولیت کلینوپتیلولایت در کاهش آبشویی کود اوره از خاک. مجله­ی آب و فاضلاب، جلد ۳، صفحات 51 تا 57.
  4. غلامحسینی، م.، م. آقاعلیخانی و م. ج. ملکوتی . 1387. تأثیر سطوح مختلف نیتروژن و زئولیت بر عملکرد کمّی و کیفی علوفه کلزای پاییزه. علوم آب و خاک، جلد 12، شماره 45، صفحات 537 تا 548.
  5. محمودی، ش. و م. حکیمیان. 1393.  مبانی خاکشناسی، چاپ نهم. انتشارات دانشگاه تهران.
  6. Allen, E. and D. W. Ming. 1995. Recent progress in the use of natural zeolites in agronomy and horticulture. Natur. Zeolites, 93: 477-490.
  7. Ando, H., C. Mihara, K. Kakuda and G.Wada. 1996. The fate of ammonium nitrogen applied to flooded rice asaffected by zeolite addition. Soil Sci. Plant Nutr. 42(3): 531-538.
  8. Bremner, J. 1996. Nitrogen-Total. pp. 1085- 1122. In: D. L. Sparks et al. (Eds), Method of Soil Analysis. Part 3. 3rd Ed., ASA and SSSA, Madison WI, USA.
  9. Bremner J. M. and V. Mulvaney. 1982. Total-nitrogen. pp: 595-624. In: A. L. Page (ed.). Methods of Soil Analysis. Part. ΙΙ. 2nd ed. Monogragh no. 9. Am. Soc. Agron. Madison, WI.
  10. Celik, M., B. Özdemir, M.Turan, I. Koyuncu, G. Atesok and H. Sarikaya. 2001. Removal of ammonia by natural clay minerals using fixed and fluidised bed column reactors. Water Sci. Technol. 1(1): 81-88.
  11. Chapman H.D. and P.F.Pratt 1982. Methods of Analysis for Soils, Plants and Waters. Agric. Sci., Univ. Calif. Agriculture & Natural Resources publication.
  12. Chinnamuthu, C. and P. M. Boopathi. 2009. Nanotechnology and agroecosystem. Madras Agric J. 96: 17-31.
  13. Corradini, E., M.De Moura and L. Mattoso. 2010. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express.Polymer Letters, 4(8): 509-515.
  14. Gee, G.W. and J.W. Bauder. 1986. Particle-size analysis. pp. 383- 411. In: A. Klute (ed.), Methods ofsoil analysis. Part 1. 2nd Ed. Agron. Monogr. No. 9, ASA and SSSA, Madison WI.
  15. Havlin, J. L., S. L. Tisdale, W. L. Nelson and J. D. Beaton. 2013. Soil Fertility and Fertilizers. 8th Ed.  Pearson, USA.
  16. Hernandez, J. and Yilma, G. 2006. Zeolite soil amendment to increase nitrogen fertilizer efficiency sand-based root zone mixes. Illinois Univ. Mail Code. 4415: 62901-64415.
  17. Huang, Z. and Petrovic, A. 1994. Physical properties of sand as affected by Clinoptilolite zeolite particle size and quantity. J.Turfgrass Manage. 1(1): 1-15.
  18. Lee, J. 2010. Effect of application methods of organic fertilizer on growth, soil chemical properties and microbial densities in organic bulb onion production. Scientia Hort. 124(3): 299-305.
  19. Lindsay, W. L. and W. A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
  20. MacKown, C. and Tucker, T. 1985.  Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Sci. Soc. Am. J. 49(1): 235-238.
  21. Malekian, R., J. Abedi-Koupai and S. S. Eslamian. 2011. Influences of Clinoptilolite and surfactant-modified Clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mat. 185(2): 970-976.
  22. Miransari, M. 2011. Soil microbes and plant fertilization. Appl. Microb. Biotech. 92(5): 875-885.
  23. Monreal, C. 2010. Nanofertilizers for increased N and P use efficiencies by crops. Summary of information currently provided to MRI concerning applications for round, 5: 12-13.
  24. Mumpton, F. A. 1999. Uses of natural zeolites in agriculture and industry. Proc. Nat. Academy Sci. 96: 3463-3470.
  25. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. pp. 961-1010. In: D.L. Sparks et al. (Eds.). Method of soil analysis. Part 3. 3rd Ed. ASA and SSSA, Madison WI.
  26. Oh, J. M., T. T. Biswick and J. H. Choy. 2009. Layered nanomaterials for green materials. J. Mat. Chem. 19: 2553-2563.
  27. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA. Cir. 939. U. S. Gov. Print. Office, WI.
  28. Perez-Caballero, R., J. Gil, C. Benitez and J. Gonzalez. 2008. The effect of adding zeolite to soils in order to improve the NK nutrition of olive trees. Preliminary results. Am. J. Agric. Biol. Sci. 3(1): 321-324.
  29. Pierzynski, G. M., G. F. Vance and J. T. Sims. 2005. Soils and Environmental Quality: CRC Press.
  30. Polat, E., M. Karaca, H. Demir and A. N. Onus. 2004. Use of natural zeolite (Clinoptilolite) in agriculture. J. Fruit Ornamen. Plant Res. 12: 183-189.
  31. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved salts. pp. 417-436. In: D.L. Sparks et al. (Eds.). Methods of soil analysis. Part 3. 3rd Ed. ASA and SSSA, Madison WI.
  32. Romano, N. and A. Santini. 2002. Water retention and storage: field. pp. 721738, In: J. H. Dane and G. C. Topp (eds) Methods of Soil Analysis, Part 4, Physical methods. Am. Soc. Agron. Madison, WI.
  33. Sikora, L. J., and R. A. Szmidt. 2001. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. Compost utilization in horticultural cropping systems. PP. 287-305, CRC Press, Boca Raton, FL.
  34. Shukla, S., E. A. Hanlon, F. H. Jaber, P. J. Stoffella, T. A. Obreza and M. Ozores-Hampton. 2006. Groundwater nitrogen: behavior in flatwoods and gravel soils using organic amendment for vegetable production. Univ. Florida Ext. Ser. Pub# CIR, 1494