اثرات آلودگی نفتی بر آب‌گریزی و منحنی مشخصه رطوبتی دو خاک با بافت متفاوت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه خاک شناسی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا

2 استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا

3 استاد گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

آب­گریزی یکی از مشکلات اصلی آلودگی نفتی خاک­ها می­باشد، که می­تواندتوزیعآبرا از طریقکاهشنفوذ، افزایش رواناب سطحی، فرسایشخاکو جریانترجیحی تحت تأثیر قرار ­دهد. هدف از این مطالعه بررسی اثرات نفت خام بر آب­گریزی و مقدار آب خاک می­باشد. نمونه­های دست­نخورده خاک از دو بافت لوم­شنی و لوم­رسی برداشته شد و سه سطح صفر، 5/0% و 1% (w/w) نفت خام به آنها اضافه شد. برای اندازه­گیری آب­گریزی خاک­ها از آزمایش زمان نفوذ قطره آب استفاده شد. منحنی مشخصه رطوبتی خاک­ها با استفاده از دستگاه­های جعبه شن و صفحات فشاری اندازه­گیری شد، مدل ونگنوختنمعلم بر داده­های منحنی مشخصه رطوبتی برازش و شاخص کیفیت فیزیکی خاک دکستر (S) محاسبه شد. افزایش نفت خام آب­گریزی را افزایش داد و خاک لوم­شنی به دلیل داشتن سطح ویژه کمتر، بیش­تر در معرض آب­گریزی قرار گرفت. آلودگی نفتی همچنین سبب تغییر توزیع اندازه منافذ شد، به این صورت که ظرفیت مزرعه و میزان آب قابل دسترس گیاه با توجه به گسترش منافذ ریز افزایش یافت. اگرچه آب­گریزی میزان آب قابل دسترس گیاه را افزایش داد، با این حال، کاهش منافذ درشت می­تواند شرایط نا­مطلوبی را برای رشد گیاه به دنبال داشته باشد. آلودگی نفتی همچنین بر شکل و شیب منحنی مشخصه رطوبتی تأثیر­گذار بود. نگه­داشت آب در خاک­های آلوده به نفت خام درهر دو بافت لوم شنی و لوم رسی به دلیل کاهش منافذ درشت، در مکش­های پایین ، کمتر و در خاک لوم رسی به دلیل افزایش منافذ ریز، در مکش­های بالا، بیشتر بود. نفت خام شاخص S را به طور قابل­توجهی در هر دو بافت کاهش داد اما این امر در بافت لوم­شنی با شدت بیش­تری مشاهده شد. بر اساس طبقه­بندی دکستر و نتایج حاصل، آب­گریزی ناشی از مواد نفتی با کاهش منافذ درشت و شاخص S (در دامنه بین 02/0 تا 035/0) سبب کاهش کیفیت خاک گردید که پیامد­های نامطلوبی را برای رشد گیاه به دنبال دارد. همچنین، خاک­های با بافت درشت به آسانی می­توانند سبب توسعه آب­گریزی خاک شوند. 

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Petroleum Contamination on Water Repellency and Water Characteristic Curve of Two Different Soil Textures

نویسندگان [English]

  • E. Kamel 1
  • A. Safadoust 2
  • M. R. Mosaddeghi 3
1 MSc. Student, Dept. of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan
2 Assistant Professor, Dept. of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan
3 Professor, Dept. of Soil Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan
چکیده [English]

Water repellency is one of the major problems of oil-contaminated soils and influences water redistribution via reduced infiltration, enhanced surface runoff and soil erosion, and preferential flow. The objectives of this study were to examine the effects of petroleum on water repellency and soil water content. Undisturbed samples were collected from sandy loam and clay loam textured soils and three levels of petroleum including 0, 0.5% and 1% (w/w) were added to the samples. The water drop penetration time (WDPT) test was used to measure the water repellency of soils. The soil water characteristic curve (SWCC) of the soil cores was measured using sandbox and pressure plate apparatus. The van Genuchten-Mualem model was fitted to the SWCC data and soil physical quality index (S) as defined by Dexter. Increment of petroleum increased the soil water repellency and sandy soils were most susceptible to water repellency due to low specific surface area. Petroleum contamination also changed soil pore size distribution, as the soil field capacity and available water content (AW) was increased due to development of soil microporosity. Although greater water repellency increased AW in the polluted samples, reduction in soil macroporosity could result in unfavorable condition for plant growth. Petroleum contamination affected the shape and slope of SWCC. Water retention in petroleum-contaminated soil of the two textures of sandy loam and clay loam was lower at low suction values due to decrease in macroporosity, while in clay loam soil it was higher at high suction values due to increase in microporosity. Petroleum significantly decreased the S index of both soil textures;but it was more severe in sandy loam texture. According to Dexter classification and results, water repellency due to petroleum decreased soil quality by reducing macro pores and S index (ranged between 0.02 to 0.035), which have unfavorable result for plant growth. Also, coarse textured soils could develop water repellency more readily.

کلیدواژه‌ها [English]

  • Pore size distribution
  • Dexter's index
  • Oil contamination
  • Soil quality index
  1.  بشارتی، ح. 1393. پالایش میکروبی خاک‌های آلوده به مواد نفتی و بررسی نقش رایزوسفر در کارایی ریز جانداران. نشریه پژوهش­های خاک (علوم آب و خاک). 28(3): 573- 584.
  2.  بیرامی، ح،  نیشابوری، م،  عباسی، ف، ناظمی، ا.ح. 1394. تأثیر آبگریزی خاک بر منحنی نگهداری رطوبت و شاخص کیفیت فیزیکی شاخص (S) در دو خاک با بافت متفاوت. نشریه دانش آب و خاک. 25(4): 17- 26.
  3.  بایرام،م، بهمنی،ا. 1394. تأثیر نوع خاک و وضعیت تراکم بر منحنی مشخصه رطوبتی خاک. نشریه حفاظت منابع آب و خاک. 4(4): 65-78.
  4. شهاب آرخازلو، ح، امامی، ح، حق نیا، غ.ح، کریمی، ع. 1390. تعیین توزیع بهینه اندازه منافذ خاک با استفاده از شاخص های کیفیت فیزیکی خاک و بررسی عوامل موثر بر شاخص Sgi در جنوب شهر مشهد. مجله آب و خاک (علوم صنایع کشاورزی). 25(4):881-891.
  5. صفادوست، آ، م، م.­ر، محبوبی، ع.­ا، یوسفی، گ. 1391. اثر دوره­های تر شدن/خشک شدن، انجماد/ ذوب شدن و فعالیت کرم خاکی بر ویژگی­های هیدرولیکی خاک. نشریه آب و خاک (علوم و صنایع کشاورزی). 26(2) : 340-348
  6. فرزادیان، م، حجتی، س، صیاد، غ.ع، عنایتی ضمیر، ن. (1394) استفاده از زئولیت برای کاهش آبگریزی یک خاک‌ آلوده به ترکیبات نفتی. مجله علوم آب و خاک. ۱۹ (۷۲) :۵۷-۶۷
  7. کرمانپور، م، مصدقی، م.ر. 1393. ارزیابی آلودگی نفتی آب و خاک بر پایداری، شدت آب­گریزی خاک و مدیریت آلاینده­ها در منطقه بختیار دشت اصفهان. نشریه مدیریت خاک. 3(1): 43-51.
  8. نورمهناد، ن، طباطبائی، ح. 1392. اثرات آب­گریزی ناشی از خاک­های حرارت دیده شده بر روی شاخص کیفیت خاک. اولین کنفرانس بین المللی ایده­های نو در کشاورزی. 5-6 تیر. دانشگاه آزاد اسلامی واحد خوراسگان. اصفهان.
  9. نورمهناد، ن، طباطبائی، ح، نوری امامزاده­ایی، م.ر، قربان دشتکی، ش، و هوشمند، ع.ر. 1392. تعیین منحنی رطوبتی و پارامترهای معادله ون­گنوختن در خاک­های آبدوست و آبگریز شده در اثر حرارت. مجله پژوهش­های خاک)علوم خاک و آب.( 27(4). 574- 582.
  10. نورمهناد، ن، طباطبائی، ح، نوری امامزاده­ایی، م.ر، قربان دشتکی، ش، و هوشمند، ع.ر. 1394. تأثیر کاربرد لجن فاضلاب شهری بر آبگریزی و منحنی رطوبتی خاک.  نشریه دانش آب و خاک. 25(3). 75-90.
  11. Abosede, E.E. 2013. Effect of crude oil pollution on some soil physical properties. Journal of Agriculture and Veterinary Science. 6:14–17.
  12. Adams, P., De-Leij, F.A.A.M., and Lynch, J.M. 2007. Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology. 54: 306–313.
  13. Adams, R.H., Osorio, F.G., and Cruz, J. Z. 2008. Water repellency in oil contaminated sandy and clayey soils. International Journal of Environmental Science & Technology. 5: 445–454.
  14. Bachmann, J., Rienk, R., and Ploeg, V. 2002. A review on recent developments in soil water retention theory;interfacial tension and temperature effects. Journal of Plant Nutrition and Soil Science. 165: 468–478.
  15. Beven, K., and Germann, P. 1982. Macropores and water flow in soils”. Water Resources Research. 18: 1311–1325.
  16. Botula, Y.D., Cornelis, W.M., Baert, G., and Van Ranst, E. 2012. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (DR Congo). Agricultural Water Management. 111: 1–10.
  17. Dexter, A.R. 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 120: 201–214.
  18. Dekker, L.W., and Jungerius, P.D. 1990. Water repellency in the dunes with special reference to Netherlands. Catena, Supplement. 18: 173–183.
  19. Dekker, L.W., and Ritsema, C.J. 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research. 30: 2507–2517.
  20. Diehl, D., Ellerbrock, R.H., and Schaumann, G.E. 2009. Influence of drying conditions on wettability and DRIFT spectroscopic C–H band of soil samples. European Journal of Soil Science. 60: 557–566.
  21. Doerr, S.H., and Thomas, A.D. 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology. 231: 134–147.
  22. Eibisch, N., Durner, W., Bechtold, M., Fuß, R., Mikutta, R., Woche, S.K., and Helfrich, M. 2015. Does water repellency of pyrochars and hydrochars counter their positive effects on soil hydraulic properties?. Geoderma. 245: 31–39.
  23. Ellis, R., and Adams, R.S. (1961). Contamination of soils by petroleum hydrocarbons. Advances in Agronomy. 13:197-216.
  24. Franco, C.M.M., Clarke, P.J., Tate, M.E., and Oades, J.M. 2000. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands. Journal of Hydrology. 231: 47–58.
  25. Hyun, S., Ahn, M.Y., Zimmerman, AR., Kim, M., and Kim, J.G. 2008. Implication of hydraulic properties of bioremediated diesel-contaminated soil. Chemosphere. 71: 1646–1653.
  26. Hubbert, K.R., Busse, M., Overby, S., Shestak, C., and Gerrard, R. 2015. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe Basin, USA. Fire Ecology. 11: 100–118.
  27. Karagunduz, A., Pennell, K.D., and Young, M.H. 2001. Influence of a nonionic surfactant on the water retention properties of unsaturated soils. Soil Science Society of America Journal. 65: 1392–1399.
  28. Kirkham, M.B. 2005. Principles of soil and plant water relations. Elsevier Academic Press. 500 pp.
  29. Leelamanie, D.A.L., Karube, J., and Samarawickrama, U.I. 2013. Stability analysis of aggregates in relation to the hydrophobicity of organic manure for Sri Lankan Red Yellow Podzolic soils. Soil Science and Plant Nutrition. 59: 683-691.
  30. Magdalena, L. 2013. Water repellency and critical water content in hydrophobic soils in New Zealand. Master thesis, University of Natural Resources and Life Sciences, Vienna. Pp, 169.
  31. Marín-García, D.C., Adams, R.H., and Hernández-Barajas, R. 2016. Effect of crude petroleum on water repellency in a clayey alluvial soil. International Journal of Environmental Science and Technology. 13: 55-64.
  32. Mc Gill, W.B. 1976. An introduction to field personnel on the effects of oil spill in soil and some general restoration and clean up procedures. Alberta Institute of Pedology. Edmonton. Alta. Canada.
  33. Minasny, B., and McBratney, A.B. 2007. Estimating the water retention shape parameter from sand and clay content. Soil Science Society of America Journal. 71: 1105–1110.
  34. Moore, D., Kostka, S., Boerth, T., Franklin, M., Ritsema, C., Dekker, L., and Wesseling, J. 2010. The effect of soil surfactants on soil hydrological behavior, the plant growth environment, irrigation efficiency and water conservation. Journal of Hydrology and Hydromechanics. 58: 142–148.
  35. Okoro, D., Oviasogie, P.O., and Oviasogie, F.E. 2011. Soil quality assessment 33 months after crude oil spillage and clean-up. Chemical Speciation & Bioavailability. 23:1–6.
  36. Porebska, D., Slawinski, C., Lamorski, K., and Walczak, R.T. 2006. Relationship between van Genuchten's parameters of the retention curve equation and physical properties of soil solid phase. International Agrophysics. 20: 153–159.
  37. Rasiah, V., Voroney, R.P., Groenevelt, P.H., and Kachanoski, R.G. 1990. Modifications in soil water retention and hydraulic conductivity by an oily waste. Soil Technology.3: 367–372.
  38. Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A., and Yang, X.M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma. 152: 252–263.
  39. Roy, J.L., and McGill, W.B. 2000. Investigation into mechanisms leading to the development, spread and persistence of soil water repellency following contamination by crude oil. Canadian Journal of Soil Science. 80: 595–606.
  40. Sillers W.M., Fredlund D.G., and Zakerzadeh, N. 2001. Mathematical attributes of some soil-water characteristic curves models. Geotechnical and Geological Engineering. 19: 243–283.
  41. Takawira, A., Gwenzi, W., and Nyamugafata, P. 2014. Does hydrocarbon contamination induce water repellency and changes in hydraulic properties in inherently wettable tropical sandy soils? Geoderma. 235: 279–289.
  42. Van Genuchten, M.T., Leij, F.J., and Yates, S.R. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. . Robert S. Kerr Environmental Research Laboratory, 91 p.