تغییرات مکانی وضعیت حاصلخیزی خاک شالیزارهای بخش جنوبی دشت فومنات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج. ایران

2 دانشجوی دکتری، علوم خاک، دانشکده کشاورزی، دانشگاه گیلان

3 دانشجوی دکتری، علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

4 محقق، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج. ایران

5 مربی پژوهش، عضو هیأت علمی موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

6 دانشیار، عضو هیأت علمی موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

چکیده

ارزیابی جامع کیفیت خاک­های کشاورزی برای تصمیم­گیری­های خردمندانه که سبب تولید پایدار و حفظ محیط زیست می­شود، ضروری است. بسیاری از مطالعات نشان دادند که شاخص کیفیت خاک که بر اساس ترکیبی از ویژگی­های خاک است در مقایسه با ویژگی­های فردی خاک بهتر می­تواند شرایط خاک را توصیف نماید. در این تحقیق برای ارزیابی کیفیت­خاک اراضی شالیزاری نیمه جنوبی دشت ­فومنات ابتدا با استفاده از تجزیه به مؤلفه­های اصلی یک مجموعه داده­های حداقل تهیه و سپس ویژگی­های کمی خاک از طریق نمره­دهی کیفی شد. در نهایت با وزن­دهی به هر ویژگی (از طریق روش تجزیه به مؤلفه­های اصلی)­، شاخص کیفیت­خاک (SQI) بدست آمد و در نرم­افزار GIS به پهنه تبدیل شد. نتایج نشان داد، بیشتر خاک­ها (97 درصد نمونه خاک­ها) هدایت الکتریکی کمتر از 2 دسی­زیمنس بر متر در گروه خاک­های طبیعی و بدون محدودیت  قرار داشتند. بیشتر خاک­های اراضی شالیزاری مورد مطالعه دارای pH مناسب و بدون محدودیت خاص بود. میانگین حسابی غلظت فسفر قابل­استفاده به علت وجود تعدادی نمونه با غلظت زیاد از حد بحرانی آن (12 میلی­گرم در کیلوگرم) بیشتر بود، اما در بیش از 50 درصد منطقه وضعیت نامطلوب فسفر وجود داشت. نزدیک به 76 درصد مناطق مورد بررسی دارای نیتروژن کل بالاتر از 2/0 درصد بودند که نشان­دهنده­ی کفایت نسبی این عنصر غذایی در بیشتر اراضی است. غلظت پتاسیم قابل استفاده در بیشتر مناطق مورد بررسی کمتر از حد بحرانی بود. بازنمایی شاخص کیفیت خاک نشان داد که بخش محدودی از اراضی شالیزاری که دارای کیفیت حاصلخیزی بدی بودند عمدتا متاثر از محدودیت عوامل ذاتی وایستای خاک مانند رس، کربن آلی و گنجایش تبادل کاتیونی خاک بودند، اما بیشتر اراضی مورد مطالعه دارای کیفیت حاصلخیزی متوسط بوده و مهمترین عامل محدود کننده آن کمبود عناصر غذایی فسفر و پتاسیم قابل استفاده است. این در حالیست که مصرف کودهای فسفر و پتاسیم در این ناحیه کم است.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability of Paddy Fields Soil Fertility in Southern Part of Foumanat Plain, Iran

نویسندگان [English]

  • N. Davatgar 1
  • M. Shakouri Katigari 2
  • L. Rezaee 3
  • B. Delsooz Khaki 4
  • H. Shokri Vahed 5
  • M. Kavoosi 6
1 Associated Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj
2 PhD student, Dept. Soil Science, Agricultural Faculty, Guilan University
3 PhD student, Dept. Soil Science, Agricultural Faculty, Shiraz University
4 Researcher, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj
5 Researcher Instructor, Academic member, Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization, Rasht
6 Associate Professor, Academic member, Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization, Rasht
چکیده [English]

A comprehensive assessment of agricultural soils quality is essential for making wise decision that leads to sustainable production and environmental preservation. Many studies have shown that soil quality index, based on a combination of soil characteristics, can describe soil conditions better than individual soil characteristics. In this study, to evaluate the soil quality, first, a minimum data set was made by using the principal component analysis. Then, quantitative characteristics of the soil were quantified through scoring. Finally, by weighting each attribute (through the principal component analysis), soil quality index (SQI) was obtained and converted to map by GIS software. The results showed that most of the soils (97% of soil samples) had electrical conductivity less than 2 dS/m and they were in the group of natural soils without limitation. Most of the studied paddy soils had a good pH and no special limitation. The average of available phosphorus concentration was more than the critical level (12 mg/kg) because of the presence of a number of high concentration samples, while there was a poor phosphorous situation in more than 50% of the region. Nearly 76 percent of the studied regions had total nitrogen higher than 0.2 percent, which indicated the relative adequacy of this nutrient element in most of the land. The concentration of available potassium in most of the studied areas was less than the critical level. Mapping of the soil quality index showed that some paddy fields had poor fertility quality because of the limitation of soil intrinsic and static properties such as clay, organic carbon, and cation exchange capacity. However, most of the studied lands had moderate fertility quality and the most important limiting factor was the shortage of available phosphorus and potassium, while the use of phosphorus and potassium fertilizers was low in this area.

کلیدواژه‌ها [English]

  • Guilan Province
  • GIS mapping
  • Principal component analysis
  • Soil quality index
  1. امامی، ح.، ع. ر. آستارایی و ا. فتوت. 1393. ارزیابی تأثیر مواد آلی بر توابع نمره­دهی کیفیت خاک. نشریه آب و خاک، جلد 28، شماره 3، صفحات: 575-565. 
  2. شهاب آرخازلو، ح.، ح. امامی، غ. حق نیا و ع. کریمی. 1390. تعیین مهم­ترین ویژگی­های مؤثر بر شاخص­های کیفیت خاک در بخشی از زمین­های کشاورزی و مرتعی جنوب مشهد. مجله آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شماره 5، صفحات: 1207- 1197.
  3. کاوسی، م.، و م. کلباسی. 1378. مقایسه روش­های عصاره­گیری پتاسیم خاک برای تعیین سطح بحرانی پتاسیم برای برنج در تعدادی از خاک­های شالیزاری استان گیلان. مجله علوم کشاورزی و منابع طبیعی، جلد3، شماره 4، صفحات: 70-57.
  4. محمدی، ج. 1385. پدومتری (جلد دوم- آمار مکانی). انتشارات پلک، 453 صفحه.
  5. Andrews, S.S., and C.R. Carroll. 2001. Designing a decision tool forsustainable agroecosystem management: soil quality assessment of a poultry litter management case study. Ecol. Appl., 11 (6), in press.
  6. Amacher, M.C., and C.H. Perry. 2007. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p
  7. Andrews, S., D. Karlen, J. Mitchell. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90: 25–45.
  8. Andrews, S.S., J.P. Mitchell, R. Mancinelli, K.L. Karlen, T.K. Hartz, W.R. Horwath, G.S. Pettygrove, K.M. Scow, and D.S. Munk. 2002. On-farm assessment of soil quality in California's central valley. Agron. 94: 12–23.
  9. Aparicio, V., and J.L. Coasta. 2007. Soil quality indicators continuose cropping systems in the Argentinean pampas. Soil Tillage Res. 96: 155-165.
  10. Bhaskar, B. P., and D. Sarkar. 2013. Capability and quality assessment of rice grajing hydric soils in Majul river Island, Assam, India. Journal of Agriculture and Environment for International Development. 107(1): 13-32.
  11. Bindraban, P.S., J.J. Stoorvogel, D.M. Jansen, J. Vlaming, and J.J.R. Groot. 2000. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agric. Ecosyst. Environ. 81: 103–112.
  12. Bremner, J. M. 1996. Nitrogen. Total. P. 1058- 1121. In D. W. Nelson, et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  13. Cahn, M.D., J.W.Hummeland, and B.H. Bruer. 1993. Spatial analysis of soil fertility for site specific crop management. Soil Sci. Soc. Am. J. 58: 1240-1248.
  14. Cambardella, C. A., A.T. Moorman, J. M. Novak, T.B. Parkin,  D.L. Karlen,R.F. Turco, and A.E. Konopka. 1994. Field-scale heterogeneity of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58: 1501–1511.
  15. Davatgar, N., M.R. Neishabouri, and A.R. Sepaskhah. 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173: 111-118.
  16. Ditzler, C.A., and A.J. Tugel. 2002. Soil quality field tools of USDANRCS soil quality institute. Agron. 94: 33-38.
  17. Doberman, A., and T. Fairhurst. 2000. Rice nutrient disorders and nutrient management. International Rice Research Institute.
  18. Dobermann, A., and T. Oberthur. 1997. Fuzzy mapping of soil fertility- a case study on irrigated rice land in the Phillipines. Geoderma, 77: 317. 339.
  19. Doran, J.W., and B.T. Parkin. 1994. Defining and assessing soil quality. In Doran, J.W., D.C. Coleman, D.F. Bezdicek, and B.A. Stewart (Eds.) Defining Soil Quality for a Sustainable Environment. SSSA, Madison, WI.
  20. Duffera. M., J. G. White, and R. Weisz. 2007. Spatial variability of Southeastern U. S. coastal plain soil physical properties: Implications for site specific management. Geoderma, 137: 327-331.
  21. Ferguson, R.B., G.W. Hergert, J.S. Schepers, C.A. Gotway, J. E. Cahoon, and T.A. Peterson. 2002. Site- specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Sci. Soc. Am. J. 66: 544-553.
  22. Franzen, D.W., D.H. Hopkins, M.D. Sweeney, M.K. Ulmer, and A.D. Halvorson. 2002. Evaluation of soil survey scale for zone development of site specific nitrogen management. Agron. J. 94: 381-384.
  23. Gee, W.G., and O. Dani. 1996. Particle size analysis. P. 475-490. In G.S. Campbell et al. (Eds.) Part 4. Physical methods. SSSA, Madison, WI.
  24. Govoerts, B., K.D. Sayre, and J. Deckers. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Till. Res. 87: 163- 174.
  25. Griepentrag, H.W., E. Thiessen, H. Kristensen, and L. Knudsen. 2007. A patch- size index to assess machinery to match soil and crop spatial variability. Precision Agriculture. 7: 407-413.
  26. Helmke, P.A., and D.L. Sparks. 1996. Lithium, Potassium, Rubidium and Cesium, p. 551- 574. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA, Madison, WI.
  27. Kalieta, A.L., M.C. Hirschi, and F. Tian. 2007. Field-Scale Surface Soil Moisture Patterns and Their Relationship to Topographic Indices. Transactions of the ASABE. 50(2): 557−564.
  28. Klingebiel, A.A., and P.H. Montgomery. 1961. Land capability classification. USDA Handbook, Vol. 210. United State. Department of Agricultura, Washington, DC.
  29. Kuo, S. 1996. Phosphorous. P. 869- 919. In D. W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3, Chemical methods. SSSA, Madison, WI.
  30. Liu, Z. J., W. Zhou, J.b. shen, S.T. Li, G.Q. Liang, X.B. Wang, J.W. Sun, and C. AI. 2013. Soil quality assessment of acid sulfate paddy soils with different productivity in Guangdang province, China. Journal of Integrative Agriculture. 319(13): 60594-8.
  31. Liu, Z. J., W. Zhou, J. Lv, P. He, G. Liang and H. Jin. 2015. A simple evaluation of soil quality of water logged purpule paddy soils with different productivities. PLOS ONE. 10 (5): e0127690.
  32. Mandal, U.K., K. Ramachandran, K. Sharma, B. Satyam, and K. Venkanna. 2011. Assessing Soil Quality in a Semiarid Tropical Watershed Using aGeographic Information System. Soil Sci. Soc. Am. J. 75:1144-1160.
  33. Masto, R.E., P. K.Chhonkar, D. Singh, and A. Patra. K.2007.  Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture, Ecosystems and Environment. 118: 130–142, 2007.
  34. Mukherjee, A., and R. Lal. 2014. Comparison of soil quality index using three methods. PloS One, 9(8): 1-15.
  35. Navas, M., M. Benito, I. Rodriguez, and A. Masaguer .2011. Effect of five forage legume covers on soil quality at the Eastern plains of Venezuela. Applied Soil Ecology, 49: 242–249.
  36. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. P. 961-1010. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA. Madison, Wisconsin.
  37. Qi. Y., L.D. Jeremy, B. Huang, Y. Zhao, W. Sun, and Z. Gu. 2009. Evaluating soil quality indicesin agricultural region of Jiagsu province, China. Geoderma, 144: 325- 334.
  38. Reyniers, M., K. Maertens, E. Vrindts, and J. De Baerdemaeker. 2006. Yield variability related to landscape properties of a loamy soil in central Belgium. Soil Till. Res. 88: 262- 273.
  39. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids, p. 417- 435. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3, Chemical methods. SSSA. Madison, Wisconsin.
  40. Stocking, M.A. 2003. Soil and Food Security: The Next 50 Years. Science, 302: 1356-1359.
  41. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficient. P. 1201-1229. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA. Madison, Wisconsin.
  42. Sun, B., Sh. Zhou, and Q. Zhao. 2003. Evaluationof spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of suberopical china. Geoderma, 115: 85-99.
  43. Tesfahunegn, G. B. 2014. Soil quality assessment strategies for evaluaying soil degradation in Northern Ethiopia. Applied and Environmental Soil Science. 1-14.
  44. Thomas, G.W. 1996. Soil pH and soil acidity. P. 475-490. In D.W. Nelson et al. (Eds.) Methods of Soil Analysis. Part 3. Chemical methods. SSSA. Madison, Wisconsin.
  45. Velasquez, E., P. Lavelle, and M. Andrade. 2007. GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry. 39(12): 3066-3080.
  46. Webster, R., and M.A. Oliver. 1990. Statistical methods in soil and land resource survey, Oxford University Press. New York.
  47. Weindorf, D.C., and Y. Zhu. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for Sampling Strategy. Pedosphere, 20(2): 185-197.
  48. Xin-Zhong, W., L. Guo-Shun, H. Hong-Chao, W. Zheng-Hai, L. Qing-Hua, L. Xu-Feng, H. Wei-Hong, and L. Tan-Tao. 2009. Determination of management zone for a tobacco field based on soil fertility. Computers and Electronics in Agriculture. 65: 168-175.
  49. Yanbing, Q., J.L. Darilek, H. Biao, Z. Yongcun, W. Sun, and Z. Gu. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149: 325-334.