تأثیر تیمارهای زیستی فسفاتی و روی بر جزء‌بندی فسفرمعدنی در خاک ناحیه ریشه دو رقم لوبیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران

2 استاد دانشگاه تربیت مدرس

3 استاد پژوهش مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی،کرج، ایران

4 دانشیار پژوهش مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 استادیار پژوهش مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

به­منظور بررسی تأثیر تیمارهای زیستی فسفاتی و روی بر جزء­بندی فسفر معدنی در خاک ناحیه ریشه دو رقم لوبیا آزمایشی به­‌صورت فاکتوریل در قالب طرح آماری کاملاً تصادفی اجرا شد. فاکتور­های این تحقیق شامل دو رقم لوبیا چیتی (تلاش و صدری)، چهار سطح فسفر (P0: شاهد، P1: مصرف سوپر­فسفات تریپل بر اساس آزمون خاک، P2: مصرف کود زیستی فسفاتی و سوپر فسفات تریپل به میزان 50 درصد توصیه بر اساس آزمون خاک و P3: مصرف کود زیستی فسفاتی) و سه سطح روی (Zn0: شاهد، Zn1:مصرف 50 کیلوگرم در هکتار سولفات روی وZn2 : مصرف تیمار زیستی روی) بود. نتایج نشان داد بین دو رقم مورد آزمایش اختلاف معنی­دار در میزان اجزاء دی­کلسیم فسفات (Ca2-Pاکتا کلسیم فسفات  (Ca8-P)، آپاتیت فسفات (Ca10-P) و فسفر کل وجود داشت. کمترین میزان اجزاء معدنی فسفر در خاک ناحیه ریشه رقم صدری حاصل شد. تیمار فسفری بر اجزاء معدنی فسفر به­جز آلومینیوم فسفات (Al-P)، فسفات آهن(Fe-P) و فسفرمحبوس در اکسیدهای آهن (O-P) تفاوت معنی­دار ایجاد نمود. در تیمار P1، روند افزایشی و در تیمار­های P2 و P3، روند کاهشی در شکل های معدنی فسفر مشاهده شد. تیمار روی تفاوت معنی­دار بر اجزاء معدنی فسفر به جز Al-P و O-P ایجاد نمود. حداقل مقادیر اجزاء فسفر از تیمار زیستی Zn2 حاصل شد. در بین اثرات متقابل، اثرات متقابل سه گانه رقم در فسفر و روی بر Ca2-P و Ca10-P و اثر متقابل دوگانه فسفر و روی بر اجزاء Ca2-P،Ca8-P ، Ca10-P و فسفر کل معنی­دار شدند. حداکثر این اجزاء از تیمارهای C1P1Zn0 و P1Zn0 و حداقل از تیمارهای زیستی C2P2Zn2، P2Zn2 و P3Zn2 حاصل شد. رقم صدری و تیمارهای زیستی فسفاتی و روی از کارآیی بالاتری در آزادسازی و جذب شکل­های معدنی فسفر برخوردار می­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Phosphate and Zinc Bio-Treatments on Inorganic Phosphorus Fractionation in Root Zone Soil of Two Cultivars of Bean (Phaseolus vulgaris L.)

نویسندگان [English]

  • M. Mohammadi 1
  • M. J. Malakouti 2
  • K. Khavazi 3
  • F. Rejali 4
  • M. H. Davoodi 5
1 Assistant Professor, Soil and Water Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education, and Extension Organization, Shahrekord, Iran
2 Professor of Tarbiat Modares University
3 Professor of Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
4 Associate Professor, Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj
5 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
چکیده [English]

In order to study the effect of phosphate and zinc bio-treatments on inorganic P fractionation in two cultivars of bean, an experiment was conducted as factorial in a completely randomized design. The research treatments consisted of two cultivars of bean (Talash and Sadri), four levels of P (P0: Control, P1: Use of TSP fertilizer on the basis of soil test, P2: 50 percentage of TSP + P biofertilizer, and P3: Use of P biofertilizer), and three levels of Zn (Zn0: Control, Zn1: 50 kg ha-1 ZnSO4, and Zn3: Use of biological Zn treatment). The results revealed that there were significant differences between the two cultivars on Ca2-P, Ca8-P, Ca10-P and total P. The minimum amount of inorganic P fractions was obtained from root zone soil of Sadri cultivar. The effect of P treatment was significant on inorganic P fractions, except Al-P, Fe-P and O-P. The amount of inorganic P forms showed an increase in P1 and a decrease in P2 and P3 treatments. The effect of Zn treatment was significant on inorganic P fractions, except Al-P and O-P. The minimum amount of inorganic P fractions was obtained from Zn2. Among the interaction effects, the triple interaction effect of cultivar × P × Zn was significant on Ca2-P and Ca10-P and the double interaction effect of P × Zn was significant on Ca2-P، Ca8-P, Ca10-P and TP. The maximum amounts of these forms were obtained from C1P1Zn0 and P1Zn0, and the minimum from C2P2Zn2, P2Zn2 and P2Zn3 treatments. Sadri cultivar and phosphate and Zn bio-treatments had higher efficiency in release and uptake of P inorganic forms.

کلیدواژه‌ها [English]

  • Mycorrhiza
  • Bean cv. Talash and Sadri
  1. امامی، ع. 1375. روش­های تجزیه گیاه. موسه تحقیقات خاک و آب. جلد اول. نشریه فنی شماره 982.
  2. دهقان،ر. ع.، ح، شریعتمداری، و ح، خادمی. 1386. شکل های فسفر خاک در چهار ردیف اراضی در منطقه اصفهان و شهرکرد. مجله علوم و فنون کشاورزی و منابع طبیعی، 42: 473- 463.
  3. ملکوتی، م. ج. و م. ن. غیبی. 1376. تعیین حد بحرانی عناصر غذایی محصولات استراتژیک و توصیه صحیح کودی در کشور. نشر آموزش کشاورزی، 56 صفحه.
  4. محمدی م. 1365. گزارش مطالعات خاک­شناسی نیمه تفصیلی استان چهارمحال و بختیاری (مناطق شهرکرد و بروجن). موسسه تحقیقات خاک و آب، نشریه فنی شماره 696. 239 صفحه.
  5. مستشاری، م.، م. م. اردلان، ن،  کریمیان، ح، رضایی، و ح، میر حسینی، 1388. توزیع شکل­های معدنی فسفر و ارتباط آن با ویژگی­های خاک در برخی خاک­های آهکی استان قزوین. مجله پژوهش­های خاک (علوم خاک و آب)، 23: 22–11.
  6. نقی­زاده اصل، ز.، و ا. دردی­پور. 1393. اثر کشت گندم بر شکل­های مختلف فسفر معدنی در خاک­های لسی استان گلستان. نشریه مدیریت خاک و تولید پایدار، 4 (4): 330-313.
  7. Abbas-Zadeh, P., N, Saleh-Rastin, H. Asadi-Rahmani, K. Khavazi , A. Soltani , A.R. Shoary-Nejati, and M. Miransari. 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum, 32:281-288.
  8. Arai, Y. and D.L. Sparks 2007. Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Journal of Advance Agronomy, 94: 135–179.
  9. Chung, J.B., and R. J. Zasoski. 1994. Ammonium potassium and ammonium calcium exchange equilibria in bulk and rhizosphere soil. Journal of Soil Science, 58: 1368- 1375.
  10. Ezawa, T., M. Hayatsu, and M. Saito. 2005. A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: Up-regulation of secreted acid phosphatase gene in the host plant. Journal of Molecular Plant-Microbe Interactions, 18(10):1046-1053.
  11. Grotz, N., and M.L. Guerinot. 2002. Limiting nutrients: an old problem with new solutions. Journal of Plant Biology, 5: 158-163.
  12. Harrell, D.L. and J.J. Wang, 2007. Evaluation of three- and five-step inorganic phosphorus chemical fractionation procedures along with inductively coupled plasma determination for calcareous soils. Journal of Soil Science, 172: 55-67.
  13. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Journal of Plant Soil, 237 (2): 173–195.
  14. Hinsinger, P., G. R. Gobran., P. J. Gregory, and W.W. Wenzel 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. Journal of New Phytologist, 168: 293-303.
  15. Jiang, B., and Y. Gu. 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Journal of Fertilizer Research, 20: 159-165.
  16. Jun, W., L. Wen-Zhao, M. Han-Feng, and D. Ting-Hui, 2010. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Journal of Pedosphere, 20: 304–310.
  17. Khalili-Rad, R., and H, Mirseyed Hosseini. 2017. Assessing the Effect of Phosphorus Fertilizer Levels on Soil Phosphorus Fractionation in Rhizosphere and Non-Rhizosphere Soils of Wheat. Communication in Soil Science and Plant Analysis, 48 (16): 1931-1942.
  18. Khan, A. A., G, Jilani, M. S. Akhtar, S. M. S.  Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biology Science, 1:48-58.
  19. Khosravi, A., M. Zarei, and A. Ronaghi. 2017. Influence of biofertilizers and phosphate sources on the Phosphorus uptake of lettuce and chemical forms of Phosphorus in Soil.  Communication in Soil Science and Plant Analysis, 48 (22): 2701-2714.
  20. Li Y.F., A. C. Luo, X. H. Wei, and X.G. Yao. 2008b Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Journal of Pedosphere, 18:785–794.
  21. Lindsay, W. L. 2001. Chemical equilibria in soils. New York: John Wiley and Sons. Inc. 449 pages.
  22. Mahmoud Soltani, S, and A. Samadi. 2003. Phosphorus fractionation of some calcareous soils in Fars province and their relationships with some soil properties. Journal of Agricultural Sciences and Natural Resources, 3 (7):119–28.
  23. Marschner, P. 2012. Mineral nutrition of higher plants. Academic Press, Waltham, MA, USA.
  24. Marschner, H. and B. Dell 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89 – 102.
  25. Mishra, A, K. Prasad, and R. Geeta. 2010. Effect of biofertilizer inoculation on growth yield of dwarf field Pea (Pisum sativum L.) in conjuncton with different doses of chemical fertilizers. Journal of Agronomy, 9: 163-168.
  26. Morovvat, A, A, Ronaghi, M. Zarei, M. Emadi, M.B. Heidarianpour and L. Gholami. 2012. Effect of arbuscular mycorrhiza fungi application on distribution of phosphorus forms in rhizosphere soils of sunflower (Helianthus annuus L.). International Journal of Agricultural Science, Research and Technology, 2 (2):77–82.
  27. Najafi, N., and H, Towfighi. 2006. Effects of rhizosphere of rice plant on the inorganic phosphorus fractions in the paddy soils of north of Iran: 1. Native inorganic phosphorus fractions. Journal of Agricultural Science, 37: 5. 919-935.
  28. Niu, X.J, L. Li, H.Wu, X.F. Song, S.C. Lai, Z.Q. Yang, D.H. Zou. 2015. Effects of phosphine on enzyme activities and available phosphorus in rhizospheric and non-rhizospheric soils through rice seedlings. Journal of Plant and Soil, 387 (1–2), 143–151.
  29. Pearse, S.J., E.J.  Veneklaas, G. Cawthray, M.D.A. Bolland, and H. Lambers. 2006. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus despite releasing fewer carboxylates into the rhizosphere. Journal of New Phytologist, 169:515–24.
  30. Rodriguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. A review. Journal of Biotechnology Advances, 17:319–39.
  31. Safari Sinegani, A., and T. Rashidi. 2011. Changes in phosphorus fractions in the rhizosphere of some crop species under glasshouse conditions. Journal of Plant Nutrition, 174: 899–907.
  32. Samadi, A., and R.J. Gilkes. 1999. Phosphorus transformations and their relationships with calcareous soil properties of South Western Australia. Soil Science Society of America Journal, 63:809–15.
  33. Sharma, S., V, Kumar, and R.B. Tripathi. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research, 1: 90-95.
  34. Shen, J., R, Li, F. Zhang, J. Fan, C. Tang and Z. Rengel. 2004. Crop yield, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Journal of Field Crops Research, 86:225–38.
  35. Shen, J., L. Yuan, J. Zhang, H. Li, Z.H. Bai, X. Chen, W. Zhang and F. Zhang. 2011. Phosphorus dynamics: From soil to plant. Journal of Plant Physiology, 156:997–1005.
  36. Smith, S.E., and D. J. Read 1997. Mycorrhizal symbiosis. Academic Press, San Diego, CA.1997
  37. Tang, C., J.J. Drevon, B. Jaillard, G. Souche, and P. Hinsinger. 2004. Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition of P deficiency. Journal of Plant Soil, 260:59–68.
  38. Zhang, F., S. Kang, J. Zhang, R. Zhang, and F. Li. 2004. Nitrogen fertilization on uptake of soil inorganic phosphorus fractions in the wheat root zone. Soil Science Society of America Journal, 68:1890–95.