تأثیر کربن آلی، کربنات کلسیم فعال و رس بر فسفر قابل جذب در برخی خاک‌های آهکی استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای علوم و مهندسی خاک دانشگاه شهید باهنر کرمان

2 استاد گروه علوم و مهندسی خاک دانشگاه شهید باهنر کرمان

3 دانشیار گروه علوم و مهندسی خاک دانشگاه شهید باهنر کرمان

چکیده

قابلیت جذب فسفر در خاک توسط واکنش­های جذب و رهاسازی کنترل می­شود. این واکنش­ها تحت تأثیر ویژگی­های فیزیکی و شیمیایی خاک هستند. برای بررسی اثرات کربنات کلسیم فعال، رس و کربن آلی بر رفتار جذب فسفر در خاک­های آهکی استان کرمان از خاک­های ردیف­های پستی و بلندی نگار-لاله­زار و بافت- ارزوئیه نمونه­برداری انجام گرفت. هم­دماهای جذب فسفر در خاک با استفاده ازروش تعادلی تعیین و ارتباط فسفر جذب شده با غلظت تعادلی فسفر به­وسیله معادلات لانگمویر، فروندلیچ و ون­های مطالعه شد. نتایج نشان داد معادله لانگمویر با بیشترین ضرایب تبیین (978/0) و کمترین خطای استاندارد تخمین (027/0) بهترین برازش را بر داده­های جذب فسفر نشان داد. حداکثر جذب فسفر (qmax) و حداکثر ظرفیت بافری فسفر با افزایش میزان کربنات­کلسیم فعال افزایش پیدا کردند به طوری که با افزایش کربنات کلسیم فعال از 68/7 درصد به 25/18 درصد، qmax از 655 به 1025 (میلی­گرم بر کیلوگرم) و حداکثر ظرفیت بافری فسفر از 114 به 243 لیتر بر کیلوگرم افزایش یافت. در حالیکه با افزایش کربن آلی در خاک­های مورد مطالعه از 74/1درصد به 8/7 درصد، qmax از 701 به 535 میلی­گرم بر کیلوگرم و حداکثر ظرفیت بافری فسفر از 90 به 44 لیتر بر کیلوگرم کاهش پیدا کرد. نیاز استاندارد فسفر محاسبه شده در غلظت تعادلی 3/0 میلی­گرم فسفر در لیتر با استفاده از معادله ون­های با مقدار رس (**80/0=r) و کربنات کلسیم فعال (**77/0=r)همبستگی مثبت و با کربن آلی (*63/0-=r) و فسفر قابل استفاده خاک (*61/0-=r)همبستگی منفی و معنی­دار نشان داد. حداکثر ظرفیت بافری و نیاز استاندارد فسفر مربوط به خاک­های مناطق ارزوئیه و نگار با بیشترین درصد کربنات کلسیم فعال و رس بود، در حالیکه در خاک­های مناطق لاله­زار و بافت به علت دارا بودن کربن آلی بیشتر و کربنات کلسیم فعال کمتر، کمترین نیاز استاندارد فسفر به­دست آمد. به طور کلی، جذب فسفر در خاک­های مورد مطالعه تحت تأثیر مقدار رس، کربنات کلسیم فعال و کربن آلی است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Organic Carbon, Active Calcium Carbonate, and Clay on Phosphorus Sorption Properties in Some Calcareous Soils of Kerman Province

نویسندگان [English]

  • H. Hosseini 1
  • M. Fekri 2
  • M. H. Farpoor 2
  • M. Mahmoodabadi 3
1 Ph.D. student, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Associate Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Phosphorus availability in soils is controlled by sorption/desorption reactions. These reactions are also affected by the physical and chemical properties of the soil. In this research, effects of organic carbon, active calcium carbonate and clay on the phosphorus sorption behavior of calcareous soils were studied along Negar-Lalezar and Baft Orzouyeh transects in Kerman Province, Iran. The phosphorus sorption in soil was determined using batch experiment and Langmuir, Freundlich and Van Hay isotherms. The results showed that, based on the coefficient of determination (0.978) and standard error of estimate (0.027), Langmuir model fitted well with experimental data. Maximum sorption of phosphorus (qmax) and maximum buffering capacity of P increased when the active calcium carbonate increased. Results showed that qmax increased from 655 to 1025 mg.kg-1, and the maximum buffering capacity of P increased from 114 to 243 L.kg-1 when calcium carbonate increased from 7.68% to 18.25%. However, qmax decreased from 701 to 535 mg.kg-1 and maximum buffering capacity of P decreased from 90 to 44 L.kg-1 with increasing organic carbon in the studied soils (from1.74% to 7.8%). Using the equation of Van Hay, the required standard phosphorus calculated at a concentration of 0.3 mg P.L-1 showed a significantly positive correlation with clay (r = 0.80**) and active calcium carbonate (r = 0.77**) contents, but significantly negative correlations with organic carbon (r = -0.63*) and available phosphorus (r = -0.61*). The maximum buffering capacity and the required standard phosphorus were found in the soils of Orzouyeh and Negar regions due to their highest percentage of active calcium carbonate and clay. However, in the soils of Lalezar and Baft regions, due to the presence of more organic carbon and less active calcium carbonate, the lowest standard phosphorus requirement was obtained. It could be concluded that phosphorus sorption in soils is influenced by soil properties such as clay, active calcium carbonate, and organic carbon contents.

کلیدواژه‌ها [English]

  • Sorption isotherm
  • Buffer capacity
  • Standard requirement
  1. 1.       توفیقی، ح. و م. شیرمردی. 1394. اثر کربنات کلسیم و pH بر سینتیک تثبیت فسفر در خاک­های مختلف. مجله تحقیقات آب و خاک ایران. جلد46، شماره 4. ص 748-739.
  2. 2.       جعفری، ا.، ح. شریعتمداری، و م. حجازی مهریزی. 1394. تعیین شاخص­های بافری و نیاز استاندارد فسفر در چهار ردیف ارضی مناطق خشک و نیمه خشک با استفاده از همدماهای جذب سطحی (مطالعه موردی: اصفهان و شهرکرد). نشریه پژوهش­های حفاظت آب و خاک، جلد 22، شماره 3. ص103-89.
  3. 3.       چرم، م. و ع. احمدپور داشلی برون. 1386. بررسی ویژگی­های جذب سطحی فسفر در خاک­های تحت کشت نیشکر در منطقه شعیبیه خوزستان. مجله پژوهش در کشاورزی: آب، خاک و گیاه در کشاورزی. جلد 7، شماره 3. ص 114-103.
  4. 4.       حسین­پور، ع. و خ. عنایت­ضمیر. 1384. مشخصات جذب سطحی فسفر و رابطه آن با ویژگی­های خاک در شماری از خاک­های همدان. مجله علوم کشاورزی ایران. جلد 37. شماره 3. ص 516-509.
  5. 5.       ریحانی­تبار، ع. 1389. بررسی خصوصیات واکنش­پذیری کربنات­ها در برخی­خاک­های آهکی ایران. مجله تحقیقات آب و خاک ایران. جلد 41. شماره 2. ص 209-201.
  6. 6.       کشتکار، س. 1394. مطالعه شاخص­های تفرق خاک در اشکال اراضی مختلف در مناطق کرمان- لاله­زار. پایان­نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان.
  7. 7.       ملک­پور، ا. 1394. نحوه تشکیل و میکرومورفولوژی خاک­های برش طولی دشتاب- اسلام­آباد شهرستان بافت استان کرمان. پایان­نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان.
  8. 8.       مهدی­زاده، م.، ع. ریحانی­تبار و ش. اوستان. 1393. تأثیر حذف ماده آلی خاک بر جذب فسفر در برخی از خاک­های آهکی استان آذربایجان شرقی. نشریه تحقیقات کاربردی خاک. جلد2. شماره1. ص 14-1.
  9. 9.       صمدی، ع و ا. سپهر. 1392. استفاده از هم­دماهای جذب فسفر در تعیین نیاز کودی غلات. نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی). سال 17. شماره 65. 184-173.
  10. 10.    شهبازی، ک. و م. ح. داوودی. 1391. ارزیابی نیاز فسفر گندم در خاک­های آهکی با استفاده از همدماهای جذب فسفر. نشریه پژوهش­های خاک (علوم آب و خاک). جلد 26. شماره 1. ص 17-1.
  11. 11.    شیروانی، م. و ح. شریعتمداری. 1381. استفاده از هم­دماهای جذب سطحی در تعیین شاخص­های ظرفیت بافری و نیاز استاندارد فسفر برخی خاک­های آهکی استان اصفهان. نشریه علوم و فنون کشاورزی و منابع طبیعی. جلد 6. شماره 1. ص 129-121.
  12. 12.    نادری­پیکام، ا. و م. جلالی. 1388. جذب سطحی فسفر و ارتباط آن با خواص فیزیکی و شیمیایی برخی از رسوبات رودخانه­ای همدان. یازدهمین کنگره علوم خاک ایران. دانشگاه گرگان.
  13. Agbenin, J.O., and H. Tiessen. 1994. The effects of soil properties on the differential phosphate sorption by semiarid soils from northeast Brazil. Soil Science Society American Journal. 157: 36-45.
  14. Allison, L.E., and C.D. Moodie. 1965. Carbonates. In: Black, C. A. (ED). Methods of Soil Analysis. Pares, ASA: Madison, WI. 1379-1396.
  15. Amel Idris, O.A., and H. Sirelkhatim Ahmed. 2012. Phosphorus sorption capacity as a guide for phosphorus availability of selected Sudanese soil series. African Crop Science Journal. 20(1): 59-65.
  16. Barbieri, D.M., J. Marques, G.T. Pereira, N. La Scala, D.S. Siqueira, and A.R. Panosso. 2013. Comportamento dos óxidos de ferro da fração Argila e do fósforo adsorvido, em diferentes Sistemas de colheita de cana-de-açúcar. Revista Brasileira de Cienciado solo. 37: 1557–1568.
  17. Bradl, H.B. 2004. Adsorption of heavy metal ions on soils and soils constituents. Colloid and Interface Science Journal. 277: 1-18.
  18. Daly, K., D. Styles, S. Lalor, and D.P. Wall. 2015. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Soil Science European. Journal. 66: 792–801.
  19. Dhillon, N.S., and G. Dev. 1988. Transformation of soil inorganic phosphorus reactions under various crop rotations. Soil Science Society Indian Journal. 39: 709-713.
  20. Donald, L.S. 2003. Environmental soil chemistry. San Diego, USA: Academic Press.
  21. Dossa, E.L., J. Bakam, and M. Kkouma. 2008. Phosphorus sorption and desorption in semiarid soils of Senegal amended with native shrub residues. Soil Science Society American Journal. 173: 669–82.
  22. Fink, J.R., A.V. Inda, J. Bavaresco , V. Barrón, J. Torrent, and C. Bayer. 2016. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil & Tillage Research. 155: 62-68.
  23. Fink, J. R., A.V. Inda, C. Bayer, J. Torrent, and V. Barrón. 2014. Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems. Acta Scientiarum Agronomy. 36(3): 379-387.
  24. Gee, G.W., and J.W. Bauder.1986. Particle size analysis. Pp.201-214. In: HD Jacob and G Clarke Topp. (Eds) . Methods of Soil Analysis. Part 4. Physical Methods. SSSA. Madison, WI.
  25. Gorgin. N., M. Fekri, and L. Sadegh. 2011. Impact of organic-matter application on phosphorus-desorption kinetics in two agricultural soils in southeastern iran. Communications in Soil Science and Plant Analysis. 42: 514–527.
  26. Guedes, R.S., L.C.A. Melo, L. Verguts, A. Rodríguez-Vila, E.F. Covelo and A.R. Fernandes. 2016. Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiment. Soil & Tillage Research. 162: 46-54.
  27. Hadgu. F., H. Gebrekidan, K. Kibret, and B. Yitaferu. 2014. Study of Phosphorus adsorption and its relationship with soil Properties, analyzed with Langmuir and Freundlich models. Agriculture Forestery and Fisheries. 3(1): 40-51.
  28. Havlin, J.L., S.L. Tisdale, J.D. Beaton, and W.L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management. 7.ed. Pearson Education, Upper Saddle River, NJ.
  29. Holford, I.C.R., and G.E.G. Mattingly. 1976. Phosphate adsorption and availability plant of phosphate. Plant and Soil. 44(2): 377-389.
  30. Hoseini, Y., and R.D. Taleshmikaiel. 2013. Comparison of phosphorus adsorption isotherms in soil and its relation to soil properties. International Journal of Agricultural: Reserch and Reviews. 3(1): 163-171.
  31. Jalali, M., and M. Jalali. 2015. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Science of Total Environment. 1-14.
  32. Leoppert, R.H., and D.L. Suarez. 1996. Methods of Soil Analysis . part3.Chemical Methods. Soil Science Society of America and American Society of Agronomy Madison.WI.
  33. Liu, J. Z., Z.S. Li, and J.Y. Li. 1994. Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Ecoagriculture Research. 2: 16–23.
  34. Maluf, H.J.G.M., C.A. Silva, N. Curi, L.D. Norton, and S.D. Rosa. 2018.Adsorption and availability of  phosphorus in response to humic acid rates in soils limed with CaCO3 or MgCO3 .Ciência e Agrotecnologia. 42(1): 7-20.
  35. Marschner, P. 2012. Mineral Nutrition of Higher Plants, Chapter 5 .Mineral Nutrition, Yield and Source- Sink Relationship. Elsevier. 85-133.
  36. McLaren, T., C. Guppy, M. Tighe, P. Moody, and M. Bell. 2014. Dilute acid extraction is a useful indicator of the supply of slowly available phosphorus in Vertisols. Soil Science Society American Journal. 78. 139–146.
  37. Mihoub, A., and B.N. Deraoui. 2014. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian Journal of Crop Science. 6: 383–391.
  38. Moazed, H., Y, Hoseini, A.A. Naseri, and F. Abbasi. 2010. Determining phosphorus adsorption isotherm in soil and its relation to soil characteristic. Journal of Food, Agriculture & Environment. 8(2): 1153-1157.
  39. Novais, R. F., and T.J. Smyth. 1999. Fósforoem solo e planta emcondiçõestropicais. Viçosa: Editora UFV, 399p.
  40. Oliveira, C.M.B., L.C. Gatiboni, D.J. Miquelluti, T.J. Smyth, and J.A. Almeida. 2014. Capacidade máxima de adsorção de fósforo e constante de energia de ligação em Latossolo Bruno em razão de diferentes ajustes do modelo de Langmuir. Revista Brasileira de Cienciado solo. 38: 1805–1815.
  41. Olsen, S. R., and F.E. Khasawneh. 1980. Use and limitations of physical- chemical criteria for assessing the status of phosphorus in soils. 361-410.
  42. Olsen, S. R., and L.E. Sommer, 1982. Phophorus. In: Klute, A. (Ed). Methods of soil analysis: chemical and microbiological properties, part2. 2nd Ed. Agron. Monogr. No. 9. ASA and SSSA,Madison WI. 403-430.
  43. Polyzopoulos, N.A., V.Z. Ceramidas, and H. Kiosse. 1985. Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Soil Science Society American Journal. 49: 81-84.
  44. Rashmi, I., V.R.R. Parama, and A.K. Biswas. 2016. Phosphate sorption parameters in relation to soil properties in some majoragricultural soils of india. SAARC Journal of Agriculture. 14(1): 01-09.
  45. Rhoads, J. W. 1986. Cation exchange capacity. Pp. 149- 158.In A. C. Page(Ed). Methods of soil analysis. Part2. American Society of Agronomy.
  46. Samadi, A. 2006. Phosphorus sorption characteristics in relation to soil properties in somecalcareous soils of western Azarbaijan Province. Journal of Agriculture  Science. Technology. 8: 251-264.
  47. Shoja.H., G. Rahimi, M. Fallah, and E. Ebrahimi. 2017. Investigation of phosphorus fractions and isotherm equation on the lake sediments in Ekbatan Dam (Iran). Environmental Earth Sciences. 76: 235-250.
  48. Siddique. M.T., and J.S. Robinson. 2003. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. Journal of Environmental Quality. 32: 1114- 1121.
  49. Sposito, G., 2008. The Chemistry of Soils. Oxford University Press, Oxford, p 10016.
  50. Stutter, M.I., Shand, C.A. George, T.S. Blackwell, M.S.A. Bol, R. Mackay, R.L. Richardson A.E. Condron, L.M. Turner, B.L. Haygarth, P.M. 2012. Recovering phosphorus from soil a root solution? Environmental. Soil Science of Technology. 46: 1977–1978.
  51. Sui. Y., and M.L. Thompson. 2000. Phosphorus Sorption, Desorption, and Buffering Capacity in a Biosolids-Amended Mollisol. Soil Science Society of American Journal. 64: 164-169.
  52. Tang, X., M.Wue, X. Daia, P. Chaia. 2014. Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking source reservoir and its relation with sediment compositions. Ecological Engineering. 64: 276–284.
  53. Tisdale, S.l., W.L. Nelson, J.D Beaton, and B.Tames. 1984. Soil Fertility and fertilizers, fourth edition collier Macmillan publishers London, McMillan Publishing Company.
  54. Wahba M. M. 2013.Influence of Soil Components on Phosphorus availability in some soils of Egypt.Research Journal of Chemistery Environment. 17(9): 58-65.
  55. Walkey, A., and I.A. Black. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.
  56. Wang, L., T.Liang, P.J.A. Kleinman, H.Cao. 2011. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources. Chemosphere Journal. 85: 1075–1079.
  57. Wogi, L., J.J. Msaky, F.B.R. Rwehumbize, and K. Kibret. 2015. Phosphorus adsorption isotherm: a key aspect for soil phosphorus fertility management. American Journal of Experimental Agriculture. 6(2): 74-82.
  58. Wolde, Z., and W. Haile. 2015. Phosphorus sorption isotherms and external phosphorus requirements of some soils of southern Ethiopia. African Crop Science Journal. 23(2): 89-99.
  59. YANG, S., Z. Zang, L. Cong, X. Wang, and S. Shi. 2013. Effect of fulvic acid on the phosphorus availability in acid soil. Journal of Soil Science and Plant Nutrition. 13(3): 526-533.
  60. YU, W., X. Ding, S. Xue, S. Li, X. Liao, and R. Wang. 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science and Plant Nutrition. 13(4):1003-1017.
  61. Zhang, B., F. Fang, J. Guo, Y. Chen, Z. Li, and S. Guo. 2012. Phosphorus fractions and phosphate sorption-releasecharacteristics relevant to the soil composition water-level-fluctuating zone of three Gorges reservoir. Ecological Engineering. 40: 153–59.