بررسی توزیع شکل‌های شیمیایی آهن و منگنز در خاک اطراف شرکت فولاد خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 فارغ‌التحصیل کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

حضور فلزات در شکل‌های[Y1]  شیمیایی مختلف در خاک‌ها می‌تواند نقش آنها را در بروز آثار تغذیه‌ای و یا آلودگی تحت تأثیر قرار دهد. خاک‌های نواحی اطراف کارخانجات فولاد همواره در معرض تهدید و آلودگی بوده‌اند و عمده تحقیقات انجام شده بر غلظت کل این فلزات در خاک تمرکز یافته است. این تحقیق با هدف بررسی توزیع شکل‌های شیمیایی عناصر آهن و منگنز و همبستگی اَشکال شیمیایی این عناصر با غلظت آنها در گیاه شاهی صورت گرفت. نمونه خاک از منطقه مسکونی نزدیک به کارخانه فولاد با سابقه کشت سبزیجات برداشت شد و توزیع شیمیایی عناصر مورد نظر در آن انجام و شاخص‌های آلودگی خاک محاسبه شد. با کشت گیاه شاهی در خاک آلوده سلامت گیاه مورد ارزیابی قرار گرفت. بر اساس نتایج بدست آمده در مورد عنصر آهن و منگنز بخش محلول، تبادلی و کربناتی به ترتیب در مجموع 13/0% و 4/12% از کل غلظت در خاک را تشکیل می‌دهند که این مقدار برای بخش پیوند یافته با اکسیدهای آهن و منگنز، بخش پیوندشده با مواد آلی و سولفیدها، و بخش باقیمانده به ترتیب 1/44%، 9/0%و 8/54% برای آهن و 5/41%، 7/0% و 4/45% برای منگنز می‌باشد. بیشترین سهم توزیع به بخش‌های باقیمانده و سپس در پیوند با اکسیدهای آهن و منگنز اختصاص یافته است. عنصر آهن در مقایسه با منگنز دارای مقادیر کمتری در بخش قابل جذب بوده لذا کلیه شاخص‌های محاسبه شده در مورد عنصر آهن عدم آلودگی بالفعل را نشان می‌دهند. در مقابل در مورد عنصر منگنز سهم بیشتری در بخش قابل جذب قرار داشته که با توجه به همبستگی مثبت و معنی‌دار این بخش با غلظت عناصر در گیاه، باعث افزایش نسبت خطر در گیاه گردید. در مورد هردو عنصر، فاکتور تغلیظ زیستی کمتر از حد مجاز گزارش می‌شود؛ اما با توجه به غلظت بالای این عناصر در خاک، دقت در انتخاب گیاه (با توجه به مسکونی بودن منطقه و سبزیکاری) ضروری به نظر می‌رسد.



 [Y1]به پیشنهاد سر دبیر محترم اصلاح گردید

کلیدواژه‌ها


عنوان مقاله [English]

Chemical Fractionation of Iron and Manganese in Soil Adjacent to Khuzestan Steel Company

نویسندگان [English]

  • Nafiseh Rang Zan 1
  • Mehrnoosh Golsoltani 2
  • Mahboobeh lajmirorak Nejati 2
1 Assistant Professor, Department of Soil Science, Agricultural Sciences and Natural Resources University of Khuzestan
2 MSc. Graduate, Department of Soil Science, Agricultural Sciences and Natural Resources University of Khuzestan
چکیده [English]

Presence of metals in soils in various chemical forms can affect their role in development of nutritional effects or contamination. Considering the proven effects of the Khuzestan Steel Company on contamination of surrounding soils, the purpose of this study was: (1) to investigate the chemical distribution of iron and manganese in soils taken from the vicinity of the Khuzestan Steel Company, and (2) to determine the correlation of the chemical forms of these elements with some soil characteristics and concentrations in the aerial parts of the garden cress plant. After preparation of the soil sample, physical and chemical properties were determined by standard methods. Sequential extraction was performed by modified BCR method. The data were used to calculate the risk assessment code in the soil, reduced partition index, the ratio and risk index in the plant and the bioavailability factor. Based on the results for iron, the soluble, exchangeable, and acid extractable fractions constituted 0.13% of the total iron concentration in the soil, including 44.1%, 0.9% and 54.8% as, respectively, reducible, oxidizable, and residual fractions. Therefore, the highest amount of iron in the soil was in the residual and reducible fractions, which are stable and relatively stable parts of solid phase in the soil. In case of manganese, soluble, exchangeable and carbonate fraction constituted 12.3 percent of total manganese concentration in the soil, including 51.5%, 0.7% and 45.4% as, respectively, reducible, oxidizable and residual fractions. Iron had lower amounts in soluble, exchangeable, and carbonated forms as compared to manganese, therefore, all calculated indices for iron showed no contaminated situation. In case of manganese, the conditions were different and the share of soluble, exchangeable, and carbonate was significant. Due to the positive and significant correlation of this part with concentration of element in the plant, hazard quotient was also increased in plant. Concerning both elements, the bio-concentration factor was lower than its permitted value, but due to the high concentrations of these elements in the soil and the normal vegetation of this region, it seems necessary to pay attention to the type of cultivated plant.

کلیدواژه‌ها [English]

  • Soil pollution
  • Sequential extraction
  • Risk assessment code
  • Hazard quotient
  • Bioconcentration factor
  1. غفاری­نژاد، س.ع.، کریمیان، ن. 1377. همبستگی بین منگنز عصاره­گیری­شده بوسیله پنج روش با خصوصیات خاک و پاسخ­های گیاه سویا در خاک­های آهکی استان فارس. علوم و فنون کشاورزی و منابع طبیعی 2 (4): 76-65.
  2. حق پرست تنها، م. 1371. تغذیه و متابولیسم گیاهان (ترجمه). انتشارات دانشگاه آزاد اسلامی واحد رشت.
  3. طباطبایی، م.، کریمی نژاد، م. غلامی، علی. 1391. پراکنش و غنی شدگی عناصر سنگین منگنز و نیکل در خاک­های اطراف مجتمع گروه ملی صنعت فولاد ایران در اهواز. اولین همایش ملی حفاظت و برنامه ریزی محیط زیست.
  4. عدالتی، ز.، حسینی الهاشمی، ا. 1391. بررسی آلودگی و منشأ عناصر نیکل ومنگنز در خاکهای پیرامون مجتمع فولاد خوزستان با استفاده از زمین آمار و "،.GIS. اولین کنفرانس ملی راهکارهای دستیابی به توسعه پایداردر بخش­های کشاورزی ، منابع طبیعی و محیط زیست.
  5. راست منش، ف؛ هرمزی‌نژاد، ف. 1392. ارزیابی غنی شدگی فلزات سنگین (آهن، منگنز، نیکل، سرب و روی) در خاک نواحی اطراف شرکت فولاد خوزستان. کنفرانس ملی مخاطرات محیط زیست زاگرس. خرم‌آباد. ایران.
  6. لجمیر اورک نجاتی، م.، رنگ‌زن، ن.، نادیان، ح.، خلیلی مقدم، ب. 1397. ارزیابی خطر فلزات سنگین در خاک‌های اطراف شرکت صنایع فولاد خوزستان. مجله مدیریت خاک و تولید پایدار، جلد 8 ، (4): 78-61.
  7. محمدی، ب.، فرقانی، ا. و حسینی، م. 1392. بررسی توزیع شکل­های شیمیایی آهن در خاک­های آهکی استان کردستان. دومین کنگره ملی کشاورزی ارگانیک و مرسوم. دانشگاه محقق اردبیلی.
  8. تابنده، ل. و کریمیان، ن. 1392. مقایسه دو روش آزمایشگاهی به منظور بررسی  توزیع شکل­های شیمیایی آهن در برخی خاک­های استان فارس. نشریه دانش آب و خاک، جلد 24(1): 54-41.
  9. ریحانی‌تبار، ع.، کریمیان، ن.، معزاردلان، م.، ثواقبی، غ. و قنادها، م. 1385. توزیع شکل‌های مختلف روی و ارتباط آنها با ویژگی‌های خاک در برخی خاک‌های آهکی استان تهران. مجله علوم آب و خاک (علوم، فنون کشاورزی و منابع طبیعی) 10 (3): 135-125.
  10. پاشاپور، ن.، ریحانی‌تبار، ع.، اوستان، ش. 1395. تعیین شکل‌های شیمیایی آهن و روابط آن‌ها با ویژگی‌های خاک در برخی خاک‌های استان آذربایجان شرقی. نشریه دانش آب و خاک، جلد 26، ( 1/2): 215-205.
  11. علوی، ه.، بارانی مطلق، م.، دردی‌پور، ا. 1391. تعیین شکل‌های شیمیایی مس و ارتباط آن با پاسخ‌های گیاه و ویژگی‌های خاک در برخی خاک‌های استان گلستان. مجله پژوهش‌های حفاظت آب و خاک، جلد 19(3): 62-43.
  12. جهانبخشی، ش.، رضایی، م.ر.، سیاری زهان،م.ر. 1393. مقایسه تأثیر گیاه پالایی شاهی و اسفناج در خاک‌های آلوده به کادمیوم و کروم. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد 70: 11-1.
  13. Ali, M.H.H. and Al-Qahtani, K.M. 2012. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egyptian Journal of Aquatic Research, 38: 31-37.
  14. Alvarez, G.M., Lopez – Valdivia, L.M., Novillo, J., Obrador, A., and Rico, M.I. 2006. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma, 132: 450-463.
  15. Beeby, A., and Richmond, L. 2003. Do the soft tissues of Helix aspersa serve as quantitative sentinel of predicted free lead concentration in soils? Applies Soil Ecology, 22(2): 159-165.
  16. Behera S.K., and Singh, D. 2010. Fractions of Iron in Soil under a long-term experiment and their contribution to iron availability and uptake by maize- wheat cropping sequence. Communications in Soil Science and Plant Analysis, 41: 1538-1550.
  17. Berg, B., Steffen K.T., and McLaugherty C. 2007.Litter decomposition rate is dependent on litter Mn concentrations. Journal of Biogeochemistry, 29-82.
  18. Bouyoucos, G.L. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54:464-465.
  19. Bower, C.A., Reitemeier, R.F. and Firemen, M. 1952. Exchangeable cation analysis of saline and alkaline soils. Soil Science, 73: 251-261.
  20. Cappuyns, V., Swennen, R., and Niclaes, M. 2007. Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb–Zn mining: a combined geochemical and mineralogical approach. Journal of Geochemical Exploration, 93: 78-90.
  21. Cui, YJ., Zhu, YG., Zhai, RH., Chen, DY., Huang, YZ., Qui, Y., and Liang, JZ. 2004. Transfer of metals from near a smelter in Nanhing. China Environment International, 30: 785-791.
  22. Datta, S.P. and Young, S.D. 2005. Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage sludge. Water, Air and Soil Pollution, 163: 119-136.
  23. Degryse, F.E., Smolders, R. and Merchx, N. 2006. Labile cadmium complexes increase Cd availability to plants. Environmental Science and Technology, 40: 830-850.
  24. Esteghamati, A., Noshad, S., Nazeri, A., Khalilzadeh, O., Khalili, M. and Nakhjavani, M. 2007. Patterns of fruit and vegetable consumption among Iranian adults:  a SuRFNCD-2007 study. British Journal of Nutrition, 108(1):177-81.
  25. FDA (Food and Drug Administration). 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Report of the Panel on Micronutrients. National Academy Press, Washington, DC, Food and Drug Administration. Dietary supplements. Center for Food Safety and Applied Nutrition.
  26. Filgueiras A.V., Lavilla I., and Bendicho C. 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4 (6): 823-857.
  27. Gleyzes, C., Tellier, S., Astruc, M. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21: pp. 451-467.
  28. Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., and Zheng, S. J. 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8(1): 113-120.
  29. Havlin, J. L., Beaton, J. D., Tisdale, S. L., and Nelson, W. L. 2010. Soil Fertility and Fertilizers an Introduction to Nutrient Management. 7th Edition, Prentice Hall, USA.
  30. Hesterberg D. 1998. Biogeochemical cycles processes leading to changes in mobility of chemical in soils. Agriculture, Ecosystems and Environment, 67-121.
  31. Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Hoque MF. 2014. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences 73(4): 1837-48.
  32. Kaasalainen, M., and Yli-Halla, M. 2003. Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126: 225-233.
  33. Lee, S., 2006. Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma, 135: 26-37.
  34. Li, X., Coles, B.J., Ramsey, M.H., and Thornton, I. 1995. Sequential extraction of soils for multi-element analysis by ICP-AES. Chemical Geology, 124:109-123.
  35. Lindsay, W.L., and Norvell, W.A. 1978. Development of DTPA test for zinc, iron, manganese, and copper. Soil Science Society of American Journal, 42: 421-428.
  36. Mahashabde, J. P., and S. Patel. 2012. DTPA-Extractable micronutrients and fertility status of soil in Shirpur Tahasil region. International Journal of Chemistry Technology Research 4 (4): 1681-1685.
  37. McBride M.B. 1994. Environmental chemistry of soils; Oxford University Press.
  38. Nelson, R.E. 1982. Carbone and gypsum. Methods of Soil Analysis. Part 2. American Society of Agronomy, 181-199.
  39. Nriagu, J.O. 1996. A History of Global Metal Pollution. Science, 5259: 223-272.
  40. Quevauviller, P. 1998. Operationally defined extraction procedures for soil and sediment analysis. Trends in Analytical Chemistry. 17(5): 289-298.
  41. Quevauviller, P., Rauretb, G., Lopez-Sanchez, J. F., Rubiob, R., Ure’, A. and Muntaud, H. 1997. Certification of trace metal extractable contents in asediment reference material (CRM 601) following a three-step sequential extraction procedure. The Science of the Total Environment, 205: pp. 223-234.
  42. RAIS, 2017. Risk exposure models for chemicals user's guide. Risk Assess. Inf. Syst. URL.https://rais.ornl.gov/tools/rais_chemical_risk_guide.html, Accessed date: 1 January 2017.
  43. Rang Zan, N., Datta, S.P., Rattan, R.K., Dwivedi, B.S., and Meena, M.C. 2013. Prediction of the solubility of zinc, copper, nickel, cadmium and lead in metal contaminated soils. Environmental Monitoring and Assessment, 185: 10015-10025.
  44. Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., and Rincon, J. 2009. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90: 1106–1116.
  45. Rothenberg, S.E., Du, X., Zhu. Y.G., and Jay, J.A. 2007. The impact of sewage irrigation on the uptake of mercury in corn plant from suburban Beijing. Environmental Pollution, 149: 246-251.
  46. Sauerbeck D. 1991. Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution, 57(1): pp. 227-37.
  47. Sharma B.D., Chahal, D.S., Singh, P.K., and Raj-Kumar, L. 2008. Forms of iron and their association with soil properties in four soil taxonomic orders of arid and semi-arid soils of Punjab, India. Communications in Soil Science and Plant Analysis, 39: 2550-2567.
  48. Singh J.P., Karwasra S.P.S., and Singh M. 1988. Distribution and forms of copper, iron, manganese and zinc in calcareous soil of India. Soil Science, 146: 359-366.
  49. Singh, K.P., Mohan, D., Singh, V.K., Malik, A., 2005. Studies on distribution and fractionation of heavy metals in Gomti river sediments – a tributary of the Ganges, India. Journal of Hydrology, 312:14-27.
  50. Smith, S.E. 1982. Inflow of phosphate into Mycorrhiza and non-Mycorrhiza plants of Trifolium subterraneum at different levels of soil phosphate. New Phytologist, 90 (2): 293-303.
  51. Sposito, G., Lund, L. J., and Chang, A. C. 1982. Trace metal chemistry in arid-zone amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46: 260-264.
  52. Tanwara K.S., Petitoa S.C., Ghoseb S.K., Engb P.J., and Trainora T.P. 2008. Structural study of Fe (II) adsorption on hematite. Geochimica et Cosmochimica Acta, 72 - 3311.
  53. Tening, A. S. and J. A. Omueti. 2011. Suitability of extractants for predicting iron in soils of the humid zone of South-Western Nigeria. International Journal of Agriculture and Biology, 2(8): 1244-1250.
  54. Tessier, A., Campbell, P.G.C., and Bission, M. 1979. Sequential extraction procedure for the speciation of particulate traces metals. Analytical Chemistry, 51: 844-851.
  55. Unites State Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils, USDA Handbook. 60. Washington, DC.
  56. Ure, A. M., and Davidson, C. M. 2001. Chemical speciation in the environment. Blackie. Glasgow 265–321.
  57. USEPA, 1989. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A) Interim Final Risk Assessment Guidance for Superfund Human Health Evaluation Manual (Part A) Interim Final.
  58. USEPA (US Environmental Protection Agency). 2002. Child Specific Exposure Factors Handbook. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response, Washington, DC.
  59. Walkely, A. and Black, I. A. 1934. An examination of method for determination of soil organic matter and proposed modification of chronic acid method. Soil Science, 37: 29-38.
  60. Walna, B., Spychalski, W., and Ibragimow, A. 2010. Fractionation of Iron and Manganese in the Horizons of a Nutrient-Poor Forest Soil Profile Using the Sequential Extraction Method. Polish Journal of Environmental Study, 19 (5): 1029-1037.
  61. Xian, X. 1989. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil, 113: 256-264.
  62. Xue, N., Seip, HM., Guo, J., Liao, B., and Zeng, Q. 2006. Distribution of Al, Fe and Mn-pools and their correlation in soils from two acid deposition small catchments in Hunan, China. Chemosphere. 65: 2468-2476.
  63. Zhang, H. Zhao, F.J., Sun, B., Davison, W. and McGrath, S.P. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environmental Science and Technology 35: 2602-2607.