تأثیر کادمیم بر برخی از شاخص‌های رشد و غلظت عناصر غذایی در رقم‌های مختلف گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد گروه علوم خاک دانشکده کشاورزی، دانشگاه زنجان

2 استاد گروه علوم خاک دانشکده کشاورزی، دانشگاه زنجان

3 دکتری گروه علوم خاک دانشکده کشاورزی، دانشگاه زنجان

چکیده

همگام با رشد صنعت و فناوری، ورود آلاینده‌های محیط‌زیست، به ویژه فلزهای سنگین، به خاک موجب افزایش نگرانی جامعه جهانی در مورد امنیت غذایی شده است. هدف از این مطالعه بررسی اثر کادمیم بر برخی از شاخص‌های رشد و غلظت عناصر غذایی در رقم‌های مختلف گیاه گندم بود. برای این کار یک آزمایش فاکتوریل به‌صورت گلدانی در قالب طرح کاملاً تصادفی با سه تکرار در شرایط گلخانه به اجرا درآمد. فاکتورهای مورد بررسی شامل پنج سطح آلودگی خاک به کادمیم (صفر، 10، 25، 50 و 100 میلی‌گرم کادمیم بر کیلوگرم خاک) از منبع سولفات کادمیم [3Cd(SO4).8H2O]و چهار رقم گندم (زارع، پیشگام، میهن و اوروم) بودند. نتایج نشان داد که سطوح مختلف کادمیم خاک به‌طور معناداری وزن تر و خشک بخش هوایی و ریشه، شاخص کلروفیل برگ، ارتفاع بوته، و همچنین غلظت نیتروژن، فسفر، پتاسیم، آهن و مس رقم‌های مختلف گندم را کاهش داد. بیشترین میزان صفات ذکر شده در تیمار شاهد (بدون آلودگی کادمیم) و کمترین آن ها در تیمار 100 میلی‌گرم کادمیم بر کیلوگرم خاک به‌دست آمد. رقم‌های مختلف گندم واکنش متفاوتی به سطوح مختلف کادمیم خاک نشان دادند. رقم‌های پیشگام و اوروم کم‌ترین و رقم میهن بیش‌ترین حساسیت را به آلودگی خاک به کادمیم نشان دادند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Cadmium on Some Growth Indices and Nutrients Concentrations of Different Wheat Cultivars

نویسندگان [English]

  • Atefeh Tavakoli 1
  • Ahmad Golchin 2
  • samaneh abdollahi 3
1 MSc., Soil Science Department, Faculty of Agriculture, University of Zanjan, Iran
2 Professor, Soil Science Department, Faculty of Agriculture, University of Zanjan, Iran
3 PhD., Soil Science Department, Faculty of Agriculture, University of Zanjan, Iran
چکیده [English]

With the growth of industries and technologies, the entry of pollutants, especially heavy metals, into the soil has raised the international community's concern about food security. The aim of this study was to investigate the effect of cadmium on some growth indicators and nutrient concentrations of different wheat cultivars. For this purpose, a factorial pot experiment was conducted in greenhouse conditions using a completely randomized design with three replications. The studied factors included five levels of soil contamination by cadmium (zero, 10, 25, 50, and 100 mg Cd/kg of soil) from the source of cadmium sulfate [3Cd (SO4).8H2O] and four wheat cultivars (Zare, Pishgam, Mihan, and Orum). The results showed that different levels of soil cadmium significantly reduced wet and dry weights of the aerial part and root, leaf chlorophyll index, plant height, as well as nitrogen, phosphorus, potassium, iron and copper concentrations of different wheat cultivars. The highest levels of these traits were obtained from the control treatment (without cadmium contamination), and the lowest from the treatment with 100 mg Cd/kg of soil. Different wheat cultivars reacted differently to various levels of soil cadmium. Pishgam and Orum cultivars showed the least sensitivity and Mihan cultivar showed the highest sensitivity to soil contamination by cadmium.

کلیدواژه‌ها [English]

  • Soil pollution
  • Heavy metals
  • cv.Zare
  • cv.Pishgam
  • cv.Orum
  • cv.Mihan
  1. اخوان، ا.، ا. گلچین. 1398. بخش‌بندی شیمیایی و ارزیابی خطر زیست‌محیطی سرب در پسماندهای معدن سرب-روی. تحقیقات آب و خاک ایران، (9)50: 2322-2303.
  2. افشاری،ع.، ح. خادمی، و س. حجتی. 1394. ارزیابی پتانسیل خطرپذیری آلودگی فلزات سنگین در خاک‌های مرکزی استان زنجان بر اساس شاخص‌های آلودگی. پژوهش‌های حفاظت آب و خاک، (6)22: 40-21.
  3. بی‌نام. 1393. آمارنامه جهاد کشاورزی. سال زراعی 89-1388. وزارت کشاورزی، معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و کشاورزی. تهران ایران، 71 صفحه.
  4. بی‌نام. 1394. موسسه تحقیقات اصلاح و تهیه نهال و بذر. سازمان تحقیقات، آموزش و ترویج کشاورزی. 1394. معرفی ارقام زراعی (امنیت و سلامت غذایی، جلد1). قابل دسترس در .http: // www.areeo.ac.ir   
  5. جعفرنژادی، ع.، م. همایی، غ. ع. صیاد و م. بای بوردی. 1391. ارزیابی ویژگی‌های مؤثر خاک بر وضعیت غلظت  کادمیم در خاک و بذر گندم در برخی خاک‌های آهکی خوزستان .مجله پژوهش‌های حفاظت آب و خاک،  (2)19: 149-164.
  6. جوادزرین، ا.، و ب. متشرع زاده. 1394. تاثیر کادمیم بر غلظت عناصر مس، آهن، منگنز و روی در اندام هوایی ارقام مختلف گندم .به زراعی کشاورزی، (1)17: 41-27.
  7. خسروی، ی.، ع. زمانی، ع. پری زنگنه، و م. ر. یافتیان. 1396. بررسی پراکنش فلزهای سنگین در خاک‌های اطراف کارخانه سرب و روی زنجان. پژوهش های خاک (علوم خاک و آب)، (4)31: 639-627.  
  8. سلطانی، ف.، م. ل. قربانلی، و خ. منوچهری کلانتری. ۱۳۸۵. اثر کادمیم بر مقدار رنگیزه‌های فتوسنتزی، قندها و مالون آلدئید در گیاه کلزا. مجله زیست شناسی ایران، (2)19: 145-136.
  9. شیرازی، ص. ص.، ع. رونقی، ن. کریمیان، ج. یثربی، و ی. امامی. 1391. اثر سمیت کادمیم بر جذب نیترو‌ژن و فسفر و برخی از ویژگی‌های رویشی شاخساره هفت رقم برنج. علوم و فنون کشت‌های گلخانه‌ای،  (9)3: 72-57. 
  10. صفری، ی.، م. ا. دلاور، ع. اسفندیارپور بروجنی، م. ح. صالحی، و  ح. ر. اولیایی. 1395. ارزیابی وضعیت فلزات سنگین در منطقه‌ی شهرک صنعتی روی زنجان به کمک شاخص بار آلودگی. مدیریت خاک و تولید پایدار، (2)6: 119-133.
  11. عبداللهی، س.، م. ا. دلاور، و پ. شکاری. 1391. پهنه‌بندی توزیع مکانی سرب، روی و کادمیم و ارزیابی آلودگی خاک‌های منطقه انگوران، استان زنجان. نشریه آب و خاک (علوم و صنایع غذایی)، (6)26: 1420-1410.
  12. عبداللهی، س.، و ا. گلچین. 1397. مقایسه توان تولید زیست‌توده و جذب و انتقال کادمیم در سه رقم کلم. تحقیقاتآب و خاک ایران، (2)49: 259-243.
  13. علی‌احیایی، م.، و ع. ا. بهبهانی­زاده. 1372. شرح روش­های تجزیه شیمیایی خاک و گیاه، موسسه تحقیقات خاک و آب تهران، نشریه فنی شماره 893.
  14. فرهمندکیا، ز.، م. ر. مهراسبی،م. ص. سخاوتجو، م. ا. ش. حسنعلی زاده مظهر، و ز. رمضان‌زاده.  1388. بررسی فلزات سنگین درذرات راسب شونده از هوای شهر زنجان. سلامت و محیط‌زیست، (4)2: 249-240.
  15. یاری، ی.، ح. ر. ممتاز، و م. طاهری. 1395. توزیع مکانی برخی فلزات سنگین در خاک‌های منطقه صنعتی زنجان. دانش آب و خاک، (4)26: 236-223.  
  16. یعقوب‌زاده، ف.، د. ارادتمند، و م. یوسفی‌راد.1390. مقایسه دو گیاه آفتابگردان و ذرت در گیاه پالایی کادمیم از خاک. اولین کنگره ملی علوم و فناوری‌های نوین کشاورزی دانشگاه زنجان، 4-1.
  17. Abdel-Sabour, M. F., J. J. Mortvedt, and J. J. Kelsoe. 1988. Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil. Soil Science, 145(6): 424-431.
  18. Aravind, P. and M. N. V. Prasad. 2005. Cadmium zinc interactions in a hydroponic system using Ceratophyllum demersum L: adaptive ecophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology, 17(1): 3-20.
  19. Asgharipour, M. R., M. Khatamipour, and M. Razavi-Omrani. 2011. Phytotoxicity of cadmium on seed germination, early growth, proline and carbohydrate content in two wheat varieties. Advances in Environmental Biology, 5(4): 559-565.
  20. Benavides, M., P. S. M. Gallego, and M. L. Tomaro. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1): 21-34.
  21. Bolan, N. S., D. C. Adriano, P. A. Mani, and A. Duraisamy. 2003. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil, 251(2): 187-198.‏
  22. Bouyoucos, C. J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54: 464-465p.
  23. Bremner, J. M. 1996. Nitrogen-total. In: Sparks, D. L. et al., Method of soil analysis. Published by Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA. (pp. 1085-1122).
  24. Chaney, R. L., and S. B. Hornick. 1978. Accumulation and effects of cadmium on crops. In Edited Proc. First International Cadmium Conference, (pp. 125-140).‏
  25. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water, Air, and Soil Pollution, 21(1): 105-114.
  26. Cox, R. M. and T. C. Hutchinson. 1980. Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytologist, 84(4), 631-647.
  27. Davari, M., M. Homaee, and H. Khodaverdiloo. 2010. Modeling phytorememediation of Ni and Cd and from contaminated soils using macroscopic transpiration reduction functions. Journal of Science and Technology of Agriculture and Natural Resources, 14(7): 75-85.
  28. Dennis, T. 2000. A report of the uptake of metal from fertilizer. Journalof Environmental Quality, 33:497-504.
  29. Dusek, L. 1995. The effect of cadmium on the activity of nitrifying populations in two different grassland soils. Plant and Soil, 177(1): 45-53.
  30. Ghaderian, S. M., and N. Jamali Hajiani .2010. The evaluation of tolerance and accumulation of cadmium in Matthiola chenopodiifolia. Iranian Journal of Botanical Biology, 6(8): 87-98.
  31. Godbold, D. L., and A. Huttermann. 1985. Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ. Pollut. Series A, Ecological and Biological, 38(4): 375-381.
  32. Gong, J. M., D. A. Lee, and J. I. Schroeder. 2003. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences, 100(17): 10118-10123.
  33. Gussarson, M., H. Asp, S. Adalsteinsson, and P. Jensen. 1996. Enhancement of cadmium effects on growth and nutrient composition of Birth (Betula pendula) by buthionine sulphoximine (BSO). Experimental Botany, 47(2): 211-215.
  34. Haghiri, F. 1973. Cadmium uptake by plants. Journalof Environmental Quality, 2: 93-96.
  35. Hassan Dar, G. and M. M. Mishra. 1994. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils. Environmental Pollution, 84(3): 285-290.
  36. Helmke, P. H., and D. L. Spark. 1996. Potassium. In Sparks, D.L. et al., Method of soil analysis. Published by: Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA. (pp. 551-574).
  37. Hernandez, L. E., A. Garate, and R. Carpena-Ruiz. 1997. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil, 189 (6): 97-106.
  38. Jalali, M., and Z. V. Khanlari. 2008. Cadmium availability in calcareous soils of agricultural lands in Hamadan, western Iran. Soil and Sediment Contamination, 17(3): 256-268.‏
  39. James, O., and U. C. Emmanuel. 2011. Comparative studies on the protein and mineral composition of some selected Nigerian vegetables. African Journal of Food Science, 5(1): 5-22.
  40. Jiang, Z. P. and Y. Wang. 2001. Input-to-state stability for discrete-time nonlinear systems. Automatica, 37(6): 857-869.
  41. Kabata-Pendias, A., and H. Pendia. 2001.Trace Elements in Soil and Plants. CRC Press, New York, USA.
  42. Kashem, M. A. and S. Kawai. 2007. Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Science and Plant Nutrition, 53(3):246-251.
  43. Khodaverdiloo H., SH. Ghorbani Dashtaki, and S. Rezapour. 2012. Lead and cadmium accumulation potential and toxicity threshold determined for land cress and spinach. International Journal of Plant Production, 5(3): 275–282.
  44. Lindsay, W. L. and W. A. Norvel. 1978. Development of a DTPA soil tests for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3): 421-428.
  45. Loeppert, R. H., and D. L. Suarez. 1996. Carbonate and gypsum, in: Sparks, D. L., Page, A. L., Sumner, M.E., Tabatabai, M. A. and Helmke, P. A. (Ed.), Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of America Inc., Madison, WI, USA. (pp. 437-474).
  46. Lorenz, N., T. Hintemann, T. Kramarewa, A. Katayama, T. Yasuta, P. Marschner, and E. Kandeler. 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 38(6): 1430-1437.‏
  47. McLaughlin, M. J., D. R. Parker, and J. M. Clarke. 1999. Metals and micronutrients–food safety issues. Field crops research, 60(1-2): 143-163.‏
  48. Muriefah, S. S. 2008. Growth parameters and elemental status of cucumber (Cucumus sativus) seedlings in response to cadmium accumulation. International Journal ofAgriculture and Biology, 10(3): 261-266.‏
  49. Narval, R., P. M. Singh, and M. Singh. 1993. Effect of cadmium and zinc application on quality of maize. Indian Journal of Plant Physiology, 36: 170-173.
  50. Nocito, F. F., L. Pirovano, M. Cocucci, and G. A. Sacchi. 2002. Cadmium-induced sulfate uptake in maize roots. Plant Physiology, 129(4): 1872-1879.‏
  51. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. United States Department of Agriculture. United States Goverment. Print Office,
  52. Washington, D. C.
  53. Page, A. L. 1982. Methods of soil analysis, Part 2-Chemical and microbiological properties. Soil Science Society of America.
  54. Rhoades, J. D. 1996. Salinity: electrical conductivity and and total dissolved solids. Method of soil analysis, parss: chemical methods. Madison. Wisconsin, USA. (pp. 417-436).
  55. Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas, and L. A. delRio. 2001. Cadmium– induced changes in the growth and oxidative metabolism of pea plants. Journal of experimental botany, 52(364): 2115-2126.
  56. Schützendübel, A., P. Schwanz, T. Teichmann, K. Gross, R. Langenfeld-Heyser, D. L. Godbold, and A. Polle. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant physiology, 127(3): 887-898.‏
  57. Shaikh, I. R., P. R. Shaikh, R. A. Shaikh, and A. A. Shaikh. 2013. Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Research Journal of Chemical Sciences, 3(6): 14-23.
  58. Singh, B. R., and K. Myhr. 1998. Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma, 84(1-3): 185-194.‏
  59. Thomas, G. W. 1996. Soil pH and soil acidity. (pp. 475-490). In Sparks, D. L. et al., Method of Soil Analysis. Published by: Soil Science Society of America, Inc. American Society of Agronomy,Inc. Madison, Wisconsin, USA.
  60. Vassilev, A., J. Vangronsveld, and I. Yordanov. 2002. Cadmium phytoextraction: Present state, biological backgrounds and research needs. Bulgarian Journal of Plant Physiology, 28(3-4): 68–95.
  61. Vassilev, A., M. Berova, N. Stoeva, and Z. Zlatev. 2005. Chronic Cd toxicity of bean plants can be partially reduced by supply of ammonia sulphate. Journal of Central European Agriculture, 6(3): 389-396.
  62. Walkley, A., and I. A. Black. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
  63. Wang, S., W. Wu, F. Liu, R. Liao, and Y. Hu. 2017. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environmental Science and Pollution Research. 24(18): 15209-15225.
  64. Wu, F., J. Dong, Y. Cai, F. Chen, and G. Zhang. 2007. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment, 385(1-3): 228-234.‏
  65. Yadegari, M., and A. Karimpoor Dehkordi. 2010. Evaluation of some heavy metals accumulation within the soil and corps around Industrial Town of Shahr-e-Kord. Bioscience, Biotechnology Research Asia,7(1): 1-12.
  66. Yang, M. J., L. Xianyong, and Y. Xiaoer. 1998. Impact of Cd on growth and nutrient accumulation of different plant species. Chinese Journal of Applied Ecology, 9(1): 89-94.