نقش قرق طولانی مدت مرتع بر بهبود برخی ویژگی‌های فیزیکی و شیمیایی خاک و پایداری آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدانشیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی

2 دانشیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

چرای بی‏رویه مهم‌ترین عامل آسیب به ویژگی‏های خاک مراتع نیمه‏خشک است. با این وجود، اعمال قرق روشی مؤثر و کم‏هزینه برای مقابله با این پیامد است. هدف از انجام این تحقیق بررسی تأثیر پنج سال قرق مراتع ییلاقی دالاهو در استان کرمانشاه (99-1394) بر برخی ویژگی‏های خاک مانند کربن آلی، جرم مخصوص ظاهری، میانگین نسبت وزنی خاکدانه‏ها و پایداری آن بود. به‏این منظور، دو ترانسکت خطی در محدوده قرق و چرا بطور تصادفی انتخاب گردید که در هر یک 12 نقطه نمونه‏برداری به فواصل 250 متر مشخص گردید. نمونه‏برداری سالانه از خاک سطحی در طول این ترانسکت ها انجام شد. هر سال از خاک سطحی نمونه برداشت و مورد تجزیه آزمایشگاهی انجام گرفت. نتایج این تحقیق نشان داد که میانگین کربن آلی خاک تیمار قرق و چرا در سال اول به ترتیب 10/1% و 09/1% بود که با هم تفاوت معنی‏داری نداشتند که در سال پنجم به ترتیب به 70/3% و 62/1% رسید و مقدار این عامل در تیمار قرق بطور معنی‏داری افزایش یافت (p <0.05) که سه برابر سال اول بود. میانگین جرم مخصوص ظاهری خاک تیمار قرق و چرا در سال اول به ترتیب 56/1 و 57/1 گرم بر سانتی‏متر مکعب بود که با هم تفاوت معنی‏داری نداشتند، اما از سال دوم به ‏‏بعد در خاک تحت قرق روندی کاهشی یافت و در سال پنجم به کمترین میزان (266/1 گرم بر سانتی‏متر مکعب) رسید. همچنین، میانگین نسبت وزنی خاکدانه‏های با قطر بیش از 1 میلی‏متر در تیمار قرق و چرا در سال اول به ترتیب 18/9% و 09/8% بود که با هم تفاوت معنی‏داری نداشتند، در حالیکه در سال پنجم به ترتیب به 29/30% و 90/6% افزایش یافت که در سایت قرق حدود 3/3 برابر افزایش یافت. در نهایت، شاخص پایداری خاک مرتع تحت چرا در طول پنج سال رتبه 4 (کلاس محدودیت زیاد) بود، اما در خاک مرتع قرق شده به رتبه 1 (کلاس بدون محدودیت) ارتقاء یافت. نتایج این تحقیق نشان داد که پنج سال قرق پشت‏سر هم منجر به بهبود چشمگیر کیفیت خاک و پایداری آن شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Long Term Grazing Exclusion on Some Soil Physicochemical Characteristics and Sustainability

نویسندگان [English]

  • Mosayeb Heshmati 1
  • Mohammad Gheitury 2
1 Associate Professor, Dept. of Soil Conservation and Watershed Management, Kermansha Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Iran
2 Associate Professor, Dep. of Soil Conservation and Watershed Management, Kermansha for Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Iran
چکیده [English]

Heavy livestock grazing is a severe threat to soil quality in the rangelands, particularly in the semiarid regions. However, grazing exclusion is the effective and low cost management measure combating improper grazing impact. The purpose of this study was to investigate the effects of grazing exclusion on soil physicochemical properties in Dalahoo Rangeland, Kermanshah, Iran, and was carried out during 2016-2019. For this purpose, two linear transects were performed in exclosure (Ex) and grazed (Gr) sites. In each transect, 12 sampling points were selected with 250 m interval and soil samples were taken from topsoil and repeated annually. The results of this study revealed that the respective value of soil organic carbon (SOC) in Ex and Gr was 1.10 and 1.09 %, showing no significant differences between them in the first year. However, in the fifth year, SOC was enhanced to 3.70% in Ex, which was significantly higher compared to Gr (p <0.05) and 5.5 times higher than the first year. The bulk density (BD) in the Ex and Gr soil in the first year was 1.56 and 1.57 gcm-3, respectively. Over five year time, the BD of Ex significantly decreased to 1.266 gcm-3, while there was no significant change in Gr site. Furthermore, the respective ratio of coarse soil aggregate (CSA) with > 1 mm diameter in Ex and Gr was, respectively, 9.18% and 8.09% in the first year, while it was, respectively, 30.29% and 6.90% in the fifth year, which was significantly higher in Ex (p < 0.05) and indicated 3.3 times improvement through exclosure measure. Finally, the limitation class for soil quality in the Ex was changed from high (1st year) to no limitation (5th year), while Gr site, which was in “high limitation class” in the first year, showed no change during five year. This study demonstrates that five years grazing exclusion significantly improved soil quality.

کلیدواژه‌ها [English]

  • Dalahoo Rangeland
  • Coarse aggregate
  • Organic Carbon
  • Soil stability
  1. آرخازلو، ح.ش.، امامی،ح. و غ. حق‏نیا. 1391. ارزیابی رابطه مدل­های تعیین کیفیت خاک و شاخص­های پایدری آن در زمین­های کشاورزی و مرتعی جنوب مشهد. مجله پژوهش­های خاک (علوم خاک و آب)، الف، 26 (3).30-39
  2. بی‏نام. 1400. آمار کاربریدی هواشناسی، بولتن خبری و آمار بلندمدت ایستگاه هواشناسی کرندغربhttp://www.kermanshahmet.ir
  3. بی‏نام. 1398. اطلاعات کاربردی هواشناسی.اداره هواشناسی استان کرمانشاه. www.kermanshahmet.ir
  4. بی‏نام. 1392. مرکز آمار ایران، 1392. سالنامه آمار، مساحت جنگل‌ها، مراتع و پدیده‌های بیابانی کشورwww.amar.org
  5. قیطوری، م، حشمتی، م. و ی. پرویزی. 1392. تأثیر مدیریت مراتع بر تغییرات کربن آلی خاک و خاکدانه­ها در چهارمنطقه استان کرمانشاه. مجله پژوهشهای خاک (علوم خاک و آب)، الف 27 (3): 257-249.
  6. مظفری، ح.، موسوی, س. و ع. سپاسخواه. 1398. اثر کاربری اراضی بر برخی ویژگی‌های فیزیکی و شیمیایی یک خاک آهکی. پژوهش‏های خاک (علوم خاک و آب)، 33 (4): 525-540.
  7. محمدی، ج.، ح. خادمی و م. نائل. 1384. بررسی تغییر پذیری کیفیت خاک سطحی در اکوسیستم­های انتخابی در منطقه زاگرس مرکزی.
  8. مرکز آمار ایران، 1392.  سالنامه آمار، مساحت جنگل‌ها، مراتع و پدیده‌های بیابانی کشور www.amar.org
  9. Allen, C.C, Macalady A.K, Chenchouni, H., Bachelet, D., McDowell, M., Vennetier., M., Kitzberger, T., Rigling, A. and D., Breshears. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, 259 (4), pp. 660–684.
  10. Badripour, H. 2006. Country Pasture/Forage Resource Profile, Islamic Republic of Iran, FAO publication, Italy, Rome.
  11. Benthien, O., Matthias, B., Riemann, J.C. and Stolter, C. 2018. Long-term effect of sheep and goat grazing on plant diversity in a semi-natural dry grassland habitat, Heliyon, 4(3): 1-12.
  12. Choupanian, A., Gheitury, M., Heshmati, M., Mahdavi,K. and Mahdavi, M. 2012. Effects of topographic factors on carbon sequestration in Astragalus Gossypinus (Case Study: Bazan, Kermanshah Province). J. Rangeland Science, 2 (3): 577-582.
  13. Cristina, M., Vecchio, R., Golluscio, A., Rodríguez, A.M. and M.A. Taboada. 2018. Improvement of Saline-Sodic Grassland Soils Properties by Rotational Grazing in Argentina, Rangeland Ecology & Management, 71 (6): 807-814.
  14. FAO. 2010. Global Forest Resources Assessment 2010, Forestry Paper, Main report (163)FAO,
  15. Fick, S.E., Belnap, J. and M.C. Duniway. 2020. Grazing-Induced Changes to Biological Soil Crust Cover Mediate Hillslope Erosion in Long-Term Exclosure Experiment, Rangeland Ecology & Management, 73 (1): 61-72.
  16. Gheitury, M., Jafary, M., Azarnivand, H., Arzani, H., Javady,S.A. and M. Heshmati. 2012. Contribution of soil organic carbon levels, different grazing and converted rangeland on aggregates size distribution in the rangelands of Kermanshah Province, Iran, African Journal of Agricultural Research, 7(6): 2622-2631.
  17. Hashemi, A., Ghasemi, F.A., Zarafshar, M. and S. Bazot. 2019. 80-years livestock transit impact on permanent path soil in Zagros oak forest, Iran, Applied Soil Ecology, 138: 189-194.
  18. Heshmati, M., Arifin, A., Shamshuddin, J. and Majid, N.M. 2011. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate  Stability of Soils in the Catchment Zones. American Journal of Applied Sciences 8 (12): 1363-1373.
  19. Ho, P. and Azadi, H. 2010. Rangeland degradation in North China: Perceptions of pastoralists. Environmental Research, 110:302-307.
  20. Lal R. 1994. Soil Methods and guidelines for Sustainable use of soil and water resources in the tropics Soil Management Support System, USDA,-NRCS. Washington, DC.
  21. Ikemura,Y. and Shukla,M.F. 2009. Soil quality in organic and conventional farms of New exico, USA, Vol.4 No.1
  22. Lal R. 1994. Soil Methods and guidelines for Sustainable use of soil and water resources in the tropics. Soil Management Support System, USDA,-NRCS. Washington, DC.
  23. Li, N., Wen, S., Wei, S., Li, H., Feng, Y., Ren, G., Yang, G., Han, X., Wang, X. and C., Ren, 2020. Straw incorporation plus biochar addition improved the soil quality index focused on enhancing crop yield and alleviating global warming potential, Environmental Technology & Innovation, XXXX.
  24. Li, G.L., Pang, X.M. 2010. Effect of land-use conversion on C and N distribution in aggregate fractions of soils in the southern Loess Plateau, China. Land Use Policy, 27: 706-712.
  25. Loeppert,  R.H.,and  D.L.  Suarez. 1996.  Carbonate  and  gypsum. p.  437-474. In: D.L. Sparks   et   al.   (eds.). Methods   of   Soil   Analysis.   Part   3.3rded. Chemical   and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  26. Luan, J., Cui, L., Xiang, C., Wu, J., Song, H., Ma, Q. and Z.Hu. 2014. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai–Tibet Plateau, Ecological Engineering, 64: 262-268.
  27. Nael, M., Khademi, H.A. and Hajabbasi, M. 2004. Response of soil quality indicators and their spatial variability to land degradation in central Iran. Applied Soil Ecology, 27(3): 221-232.
  28. Neely, C., Bunning, S. and Wilkes, W. 2009. Review of Evidence on Drylands Pastoral Systems and Climate Change Implications and Opportunities for Mitigation and Adaptation. Food and Agriculture Organization of the United Nations publications, Rome.
  29. Nelson, D.W.,and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In: D.L. Sparks et al. (eds.). Method of Soil Analysis. Part 3.3rded. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  30. Qasim, S., Gul, S., Shah, M.H., Hussain, F., Ahmad, S., Islam, M., Rehman, G., Yaqoob and M., S.Q. Shah. 2017. Influence of grazing exclosure on vegetation biomass and soil quality, International Soil and Water Conservation Research, 5 (1):62-68.
  31. Sardf, south African rural development framework. 2005. “report”:available on http://cbdd. wsu.edu/kew/content/tr501.
  32. Sekaran, S., Laxmisagara, K., Sandeep Kumar, S. 2021. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems, Soil and Tillage Research, 208: 104885.
  33. Wang, Z., Yun, X., Wei, Z., M., Schellenberg, P., Wang, Y., Yang, X. And X. Hou. 2014. Responses of Plant Community and Soil Properties to Inter-Annual Precipitation Variability and Grazing Durations in a Desert Steppe in Inner Mongolia, Journal of Integrative Agriculture, 13 (6): 1171-1182.
  34. Yan, Y. and X. Lu. 2020. Are N, P, and N:P stoichiometry limiting grazing exclusion effects on vegetation biomass and biodiversity in alpine grassland?, Global Ecology and Conservation, 24:XXX
  35. Zutshi, A., Sohal, A. s., 2005. Integrated Management System. Journal of manufacturing technology Management, 16(2), 211-232.