بررسی تغییرات خصوصیات فیزیکی و شیمیایی خاک طی مراحل مختلف رشد نیشکر و برآورد ظرفیت ترسیب کربن آلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار پژوهش، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 مربی پژوهش، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

مطالعه حاضر جهت بررسی مراحل مختلف رشد نیشکر(پلنت، راتون 1، راتون 2، راتون 3 و راتون 4) بر خصوصیات فیزیکی و شیمیایی و میزان ذخیره کربن آلی خاک در برخی اراضی نیشکر جنوب خوزستان انجام گرفت. بدین منظور تعدادی خاکرخ (پروفیل) در مزارع نیشکر حفر شد و تعداد 30 سایت انتخاب گردید و پژوهش در قالب طرح کامل تصادفی در پنج تیمار(مراحل رشد نیشکر) و شش تکرار مورد مطالعه قرار گرفت. نتایج این پژوهش نشان داد که مدیریت کشت نیشکر و مراحل مختلف رشد در خاک‌های کشت و صنعت نیشکر سبب تغییر ویژگی‌های  فیزیکو شیمیایی و ذخیره کربن آلی خاک شد. بطوری که آبیاری فراوان و آبشویی و کشت دراز مدت نیشکر طی مراحل مختلف رشد منجر به کاهش قابلیت هدایت الکتریکی عصاره اشباع خاک، سدیم محلول خاک ، مقدار پتاسیم قابل جذب، و افزایش درصد شن و مقدار جرم مخصوص ظاهری خاک شد. از این رو، برای جلوگیری از پیامدهای منفی احتمالی و خالی شدن خاک از عناصر غذایی به ویژه پتاسیم، لازم است به طور دوره‌ای ویژگی‌های کامل خاک‌های مورد مطالعه بررسی شوند تا با ارزیابی این تغییرات بتوان روش‌های مدیریتی مناسبی برای حفظ کیفیت خاک انجام داد. نتایج حاصل از مقایسه میانگین مقادیر ذخیره کربن آلی خاک نشان داد که میزان ترسیب کربن خاک در تیمارهای موجود در سطح 1 درصد معنی­دار بود، بطوری که بیشترین مقدار ترسیب کربن در تیمار راتون 3 به میزان 84/28 تن در هکتار و کمترین مقدار در تیمار راتون 4 به میزان 50/15 تن در هکتار بود. دلیل بیشتر بودن مقدار ذخیره کربن را می‌توان به پوشش گیاهی بیشتر و در نتیجه وجود بقایای گیاهی بیشتر نسبت داد زیرا بقایای گیاهی با کاهش تبخیر از سطح خاک و افزایش رطوبت برای رشد گیاهان، اثر مثبتی بر پوشش گیاهی به خصوص در مناطق خشک و نیمه خشک دارند. به­طور کلی، مدیریت بهینه مزارع نیشکر نقش مهمی در بهبود ظرفیت ترسیب کربن اتمسفری ایفا می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Changes in Physical and Chemical Properties of Soil during Different Stages of Sugarcane Growth and Estimation of Organic Carbon Sequestration Capacity

نویسندگان [English]

  • abolfazl azadi 1
  • Seyed Alireza Seyed Jalali 2
  • Ramazanali Dehghan 3
  • Mirnaser Navidi 2
1 Assistant Professor, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO)
2 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 Research Instructor, Mazandaran Agricultural and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO)
چکیده [English]

The present study was conducted to investigate changes in soil physical and chemical properties and organic carbon storage at different stages of sugarcane growth (Plant, Ratoon 1, Ratoon 2, Ratoon 3, and Ratoon 4) in some sugarcane plantations in southern parts of Khuzestan Province, Iran. For this purpose, a number of soil profiles were dug in the sugarcane fields and 30 sites were selected and studied in a completely randomized design with five treatments (i.e. sugarcane growth stages) and six replications. The results of this study showed that long-term cultivation of sugarcane and different stages of growth in soils of Sugarcane Cultivation and Industry Company caused changes in physicochemical properties and soil carbon storage. Indeed, abundant irrigation and leaching and cultivation management of sugarcane reduced the salinity and sodium in soil solution. Also, different growth stages changed the physical and chemical properties of the soil. Different stages of sugarcane growth reduced electrical conductivity (EC), dissolved sodium in the soil, the available potassium (K), and increased the amount of bulk density (Bd) in the soil. There was no significant difference in the amount of organic matter (OM) and soil acidity (pH) of sugarcane fields at different stages of growth. Finally, in order to prevent possible negative consequences and depletion of soil nutrients, especially potassium, it is necessary to periodically study the complete properties of the soils and evaluate these changes, appropriate management methods can be performed to maintain soil quality. The results showed that difference in soil carbon sequestration was significant (p<5%) in the treatments, such that the highest carbon sequestration was in Raton 3 (28.84 tons/ha) and the lowest in Raton 4 (15.50 tons/ha). The reason for the higher amount of carbon storage can be attributed to more vegetation and, therefore, more plant debris, which reduce evaporation from the soil surface, a positive effect on vegetation, especially in arid and semi-arid regions. In general, optimal management of sugarcane fields plays an important role in improving atmospheric carbon sequestration capacity.

کلیدواژه‌ها [English]

  • Ratoon management
  • Sugarcane ratoon
  • Soil carbon storage
  1. ابوعلی، م.، کریمیان اقبال، م. و جعفری، س. 1388. تأثیر کوتاه مدت و طولانی مدت کشت نیشکر بر خصوصیات شیمیایی خاک‌ها در استان خوزستان .پایان نامه کارشناسی ارشد دانشگاه تربیت مدرس. تهران. ایران.
  2. تقی پور، آ.، رضاپورس.، دولتی، ب. و حمزه نژاد تقلیدآباد، ر. 1394. بررسی تأثیر تغییر کاربری اراضی بر برخی ویژگی های شیمیایی خاک در خوی، استان آذربایجان غربی. آب و خاک. 29 (2): 418-431.
  3. جعفری، س. و نادیان، ح. 1393. مطالعه تکامل خاک‌ها و تنوع کانی‌های رسی در یک ردیف پستی و بلندی در استان خوزستان. مجله علوم آب و خاک. ۱۸ (۶۹) :۱۵۱-۱۶۴.
  4. حسن‌لی. ع. م.1393. تغییرات اقلیمی و پیامدهای آن بر منابع آب و محیط زیست .جهاد دانشگاهی مشهد. 201ص.
  5. حمیدرضا، ب.، زند، ا. و شفیعی‌بافتی، ف.1392. مدیریت بهینه در صنعت نیشکر. انتشارات کردگار. 386 ص.
  6. خورده بین، صاحب.، حجتی، سعید.، لندی، احمد.، احمدیان فر، ایمان. 1399. مقایسه روش‌های مختلف داده‌کاوی در پیش‌بینی ذخیره ‌کربن آلی خاک در برخی اراضی شهرستان بهبهان.تحقیقات آب و خاک ایران. 51(4): 1041-1054.
  7. سید جلالی، ع.، دهقان، ر.، آزادی، ا.، زین الدینی میمند، ع.، نویدی،م.ن.و محمداسماعیل، ز. 1399. بررسی تأثیرعوامل خاکی بر رشد نیشکر در اراضی تحت کشت نیشکر در استان­های خوزستان و مازندران.  مجله پژوهش­های خاک. 34(3): 343-357.
  8. قریشی، ر.، گلی کلانپا، ا.، معتمدی، جواد. و کیوان بهجو، ف. 1392. ظرفیت ترسیب کربن در اکوسیستم مرتع و ارتباط آن با خصوصیات فیزیکی و شیمیایی خاک در مراتع خوی.تحقیقات کاربردی خاک. 2(1): 34-44.
  9. لندی، ا.، پورکیهان، س.، چرم، م.، حجتی، س. و جعفری، س. 1397. مطالعه اثرات تغییر کاربری اراضی و احداث مزارع نیشکر برخصوصیات فیزیکوشیمیایی، کانی‌شناسی و میکرومورفولوژیکی خاک در منطقه جنوب خوزستان. مجله مدیریت خاک و تولید پایدار. 8(2):43-61.
  10. محمدی، ج.1385 .پدومتری. آمار کلاسیک. جلد اول، انتشارات پلک، تهران، 532 صفحه.
  11. نیشابوری، م.ر. و ریحانی تبار، ع. 1389. تفسیر نتایج آزمون خاک، انتشارات دانشگاه تبریز. چاپ اول. 306 ص.
  12. ویسی‌تبار، ع.، همت، ع. و مصدقی، م.‌ر.1394. ارزیابی تراکم خاک مزارع نیشکر تحت حالت‌های مختلف کشت به کمک چگالی ظاهری، چگالی ظاهری نسبی و شاخص مخروط خاک. مجله علوم آب و خاک. ۱۹ (۷۲) :۹۳-۱۰۶
  13. Allison, L.E., and CD. Moodi. 1962. Carbonates. PP 1379-1396. In: C.A. Black et al. (ed), Methods of Soil Analysis. Part 2, Am. Soc Agron. Madison,WI.
  14. Anghinoni, I., V. C. Baligar, and R. J. Wright. 1996. Phosphorus sorption isotherm characteristics and availability parameters of Appalachian acidic soils. Communications in Soil Science and Plant Analysis 27: 2033-2048.
  15. Augusto, L.R, D. Jacques. and A. Roth. 2002. Impacts of several common tree species of European temperate forests on soil fertility, Annals of Forest Science. 59: 233-253.
  16. Ayoubi, S., F. Khormali., K. L. Sahrawa., D. Rodrigues. and Lima, A.C., 2011. Assessing impacts of land use changes on soil quality indicators in a Loessial soil in Golestan Province, Iran. Journal of Agriculture Science and Technology, 13:727- 742.
  17. Barzegar, A. R., Sh. Mahmoodi., F. Hamed.,i and F. Abdolvahabi. 2005. Long term sugarcane cultivation effects on physical properties of fine textured soils. J. Agric. Sci. Technol. (IRI) 7: 59–68.
  18. Blake G.R., and H. Hartge. 1986. Bulk density. p. 363-375. In Klute A. (ed.). Methods of soil analysis. 2nd ed. Agron. Monogr. 9. ASA. Madison. WI.
  19. C. J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal. 45: 464-465
  20. Braunack, M. V., J. Arvidsson., and I. Håkansson. 2006. Effect of harvest traffic position on soil conditions and sugarcane (Sacharum officinarum) response to environmental conditions in Queensland, Australia. Soil Till. Res. 89: 103-121.
  21. Bronick, C. J., and R.Lal. 2005. Soil structure and management: a review. Geoderma. 124: 22-3.
  22. Chancellor, W. J. 1977. Compaction of soil by agricultural equipment. Bulletin No. 1881. Davis: Division of Agricultural Sciences, University of California.
  23. Follett R.F. 2001. Organic Carbon Pools in Grazing Land Soils. In: Follett, R.F., J.M. Kimble and R. Lal (Eds), The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect. Lewis Publishers, Boca Raton FL, pp. 65-86.
  24. Freibauer, A., M. D. Rounsevell., P. Smith., and Verhagen. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma. 122 (1): 1-23.
  25. Garten, J.R., T. Charles. 2002. Soil carbon storage beneatch recently stablished tree plantations in tennessee snd South Carolina, USA. Biomass and Bioenergy. 23:93-102.
  26. Ghorbani, Z., S. Jafari., and B. Khalil Moghaddam. 2013. The effect of soil physicochemical properties under different land use on aggregate stability in some part of Khuzestan province. J. Soil Manand. Sus. Pro. 3(2) : 29-51.
  27. Gol, C. 2009. The effects of land use change on soil properties and organic carbon at Dagdami river catchment in Turkey. J. Environ. Biol. 30: 825-830.
  28. Håkansson, I. and J. Lipiec. 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Till. Res. 53: 71-85.
  29. Hazelton, P., and B. Murphy. 2016. Interpreting soil test results: What do all the numbers mean?. CSIRO publishing.
  30. Humbert, R. P. 1968. The Growing of Sugarcane. Elsevier: Amsterdam.
  31. Hunsigi, G. 2001. Sugarcane in Agriculture and Industry. Prism Books, Bangalore, India.
  32. Jones, C.A. 1983. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J. 47: 1208–1211.
  33. Kuo, S. 1996. Phosphorus. In D.L. Sparks (Ed.), Methods of soil analysis. (pp. 869- 921). SSSA. Madison, Wisconsin, USA.
  34. Moezzi, A., M. Sadeqhi Mianrodi., A. Gholami., T. Babaeinejad., and E. panahpour. 2019. Investigation of Long-Term Sugarcane Cultivation Influence on Some Soil Chemical Properties of Karun Agro-industry, Khuzestan province. Journal of Soil Management and Sustainable Production. 9(1): 165-178.
  35. Nosrati, K. 2012. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environmental Monitoring and Assessment. 185: 2895–2907.
  36. Page A.L., R.H. Miller., and D.R. Keeeney. 1982. Methods of soil analysis. PartII.Chemical and Microbiological methods. Seconds edition, Soil Science Society of America, Inc. Publisher Madison, Wisconsin, USA.
  37. C. E., R. C. Magarey., G. R. Sirling., B. L. Blair., M. J. Bell., and A. L. Garside. 2003. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Till. Res. 72: 125-137
  38. Pieri, C., J. Dumanski., A. Hamblin., and A. Young. 1995. Land Quality Indicators. World Bank Discussion Papers, 315.
  39. Qadir, M., A. S. Qureshi., and S. A. M. Cheraghi. 2008. Extent and characterisation of salt‐affected soils in Iran and strategies for their amelioration and management. Land Degradation & Development. 19(2): 214-227.
  40. Reeder, J.D., and G.E. Schuman. 2002. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution. 116 (3): 457-463.
  41. Reichert, J. M., L. E. A. S. Suzuki., D. J. Reinert., R. Horn., and Håkansson, I .2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research. 102(2): 242-254.
  42. Rezapour, S., A. Taghipour., and A. Samadi. 2013. Modifications in selected soil attributes as influenced by long-term continuous cropping in a calcareous semiarid environment. Natural Hazards. 69: 3. 1951-1966.
  43. Rowell, DL. 1994. Soil Science: Methods and Application. Longman Group, Harlow.
  44. Sakin, E., A. Deliboran., E.Tutar. 2011. Bulk Density of Harran Plain Soils in Relation to Other Soil Properties, African Journal of Agricultural Research, 6:1750-1757.
  45. Silva, A.J.N., M.R. Ribeiro., F.G. Carvalho., V.N. Silva., and L.E.S.F. Silva. 2007. Impact of sugarcane cultivation on soil carbon fractions, consistence limits and aggregate stability of Yellow Latosol in Northeast Brazil. Soil Tillage Research. 94: 420-424.
  46. Smith, P. 2004. Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy. 20(3): 229-236.
  47. Tamirat, T. 1992. Vertisol of central highlands of Ethiopia: Characterization and evaluation of phosphorus statues. Master’s Thesis, Alemaya University, Dire Dawa.
  48. Thomas, G. W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490.
  49. Walkey, A., and I.A., Black .1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis.1. Experimental. Soil Science. 79: 459-465.
  50. Zhang, B., and R. Horn. 2001. Mechanisms of aggregate stability in Ultisols from subtropical China. Geoderma. 99: 145-123.