ارزیابی برهمکنش سالیسیلات پتاسیم و سیلیکات پتاسیم بر عملکرد، وضعیت تغذیه‌ای و کیفیت خیار گلخانه‌ای در شرایط تنش سرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات شیمی، حاصلخیزی خاک و تغذیه گیاه؛ موسسه تحقیقات خاک و آب؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 کارشناس بخش تشکیل و طبقه‌بندی خاک؛ موسسه تحقیقات خاک و آب؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

هدف هر گلخانه­دار اتخاذ راهکارهایی است که گیاه بتواند در شرایط تنش دمایی عملکرد خود را حفظ نماید. این آزمایش با هدف بررسی تأثیر سطوح مختلف سالیسیلات پتاسیم (C7H5KO3) (0، 5/0 و 1 میلی­مولار) و سیلیکات پتاسیم (0 و 4 در هزار) بر روی عملکرد و وضعیت تغذیه­ای خیار گلخانه­ای(Cucumis sativus) در شرایط تنش سرمایی (در محدوده دمایی 15 تا 17 درجه سانتی­گراد به­صورت فاکتوریل در قالب طرح کاملاً تصادفی در شرایط گلخانه­ای در کرج اجرا گردید. نتایج نشان داد که سالیسیلات پتاسیم و سیلیکات پتاسیم در اکثر موارد بطور معنی­داری  غلظت نیترات و عناصر غذایی در گیاه و کیفیت و عملکرد خیار را تحت تأثیر قرار دادند. همچنین، محلول­پاشی همزمان آنها به طور معنی­داری بر عملکرد کل خیار و عملکرد بازارپسند تأثیر گذاشت و بیشترین افزایش عملکرد کل و عملکر بازارپسند نسبت به تیمار شاهد به ترتیب با 91/94% و 01/96% افزایش در تیمار 5/0 میلی­مولار سالیسیلات پتاسیم بدست آمد. در نتیجه­ی محلول­پاشی سالیسیلات و سیلیکات پتاسیم، عناصری مانند نیتروژن، بور، و منگنز در برگ (05/0>P) در مقایسه با تیمار شاهد بطور معنی­داری افزایش نشان دادند. علاوه بر این، تیمارهای محلولپاشی باعث کاهش معنی­دار محتوای نیترات در ماده خشک برگ خیار شدند: از حدود 11% در تیمار 1 میلی­مولار سالیسیلات+4 در هزار سیلیکات پتاسیم تا 78% در تیمار 5/0 میلی­مولار سالیسیلات+4 در هزار سیلیکات پتاسیم. به­طورکلی، یافته­های این تحقیق نشان داد که استفاده از سالیسیلات و سیلیکات پتاسیم در شرایط تنش سرما می­تواند موجب افزایش عملکرد و ارتقای کیفیت بازارپسندی محصول خیار گردد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Interaction of Potassium Salicylate and Potassium Silicate on Yield, Nutritional Status, and Quality of Greenhouse Cucumber under Cold Stress Condition

نویسندگان [English]

  • Majid Basirat 1
  • Seyed Majid Mousavi 1
  • Majid Abbaspour 2
1 Assistant Professor, Department of Soil Chemistry, Fertility and Plant Nutrition Researches; Soil and Water Research Institute; Agricultural Research, Education and Extension Organization, Karaj, Iran
2 Soil Expert, Department of Soil Genesis, and Classification; Soil and Water Research Institute; Agricultural Research, Education and Extension Organization, Karaj, Iran
چکیده [English]

The goal of any greenhouse owner is to adopt strategies that can maintain the plant's yield under temperature stress conditions. The aim of this study was to investigate the effect of different levels of potassium salicylate C7H5KO3 (0, 0.5, and 1 mM) and potassium silicate (0 and 4 parts per thousand (ppt)) on the yield and nutritional status of greenhouse cucumber (Cucumis sativus) under cold stress conditions (in the temperature range of 15-17 ͦC). This experiment was conducted as factorial arrangement based on a completely randomized design with 3 replications under greenhouse condition in Karaj, Iran. The results showed that the treatments significantly affected the concentration of nitrate and nutrients in the plant tissue, quality, and yield of cucumber. Also, simultaneous foliar application of potassium salicylate and silicate significantly affected the total yield and marketable yield of cucumber. The highest increase in total yield and marketable yield compared to the control (94.91% and 96.01%, respectively) were measured in 0.5 mM potassium salicylate treatment. Also, concentrations of N, B, and Mn in leaf significantly increased compared to the control (P<0.05). Furthermore, compared to the control treatment, the spray treatments significantly reduced nitrate content of leaf dry matter: 11% in 1 mM potassium salicylate+4 ppt potassium silicate and 78% in 0.5 mM potassium salicylate+4 ppt potassium silicate. Generally, the findings of this study showed that application of potassium salicylate and potassium silicate can increase the yield and promote the marketable yield of greenhouse cucumber under cold stress conditions.

کلیدواژه‌ها [English]

  • Cucumber nutritional management
  • Low temperature stress
  1. اکبری، س.، م. سیاری، و ف. قنبری. 1394. افزایش مقاومت به سرما در گیاهچه های خیار با کاربرد برخی از مواد تنظیم کننده رشد گیاهی. تولید فرآوری محصولات زراعی و باغی، 5(16): 36-25.
  2. آذرفام، س.پ.، ح. نادیان، ع.ا .معزی، و ع. غلامی. 1399. تأثیر سطوح مختلف سیلیسیم از منبع سیلیسیلیک اسید بر بهبود صفات رویشی گیاه دارویی آلوئه ورا تحت تنش سرما. تحقیقات آّب و خاک ایران، 51(12): 3113-3103.
  3. آق­مسجدی، پ.، و م. یارنیا. 1395. تأثیر رژیم­های آبیاری و اسیدسالیسیلیک بر عملکرد دانه و برخی ویژگی­های فیزیولوژیک ذرت. مجله علمی پژوهشی اکوفیزیولوژی گیاهی، 11 (37): 25-13.
  4. بیات، ح.، ح. مردانی، ح. آرویی، و ی. سلاح­ورزی. 1390. تأثیر سالیسیلیک اسید بر خصوصیات مورفولوژیکی و فیزیولوژیکی دانهال های خیار (Cucumis sativus cv. Super Dominus) تحت شرایط تنش خشکی. پژوهش­های تولید گیاهی (علوم کشاورزی و منابع طبیعی)، 18(3): 63-76.
  5. جعفری، س.ر.، م.ج. آروین، و خ. منوچهری. 1390. بررسی اثرات متقابل سیلیس و سالیسیلیک اسید بر پاسخ های دفاعی گیاه خیار به تنش شوری،یازدهمین سمینار سراسری آبیاری و کاهش تبخیر،کرمان.
  6. جوانمردی، ج. 1388. مبانی علمی و عملی تولید نشای سبزی. انتشارات جهاد دانشگاهی مشهد، 256 صفحه.
  7. حقیقی، م.، و ر. ابوالقاسمی. 1398. اثر تنش دمای بالا و پایین بر تغییرات رشد، فتوسنتز و فعالیت آنتی اکسیدانی گوجه فرنگی در مرحله رشد رویشی. علوم سبزی­ها، 3(1): 53-65.
  8. سلطانی دلربا، ن.، ر. کرمیان، و م. رنجبر. 1390. اثر برهمکنش سالیسیلات پتاسیم و تنش سرما بر فعالیت آنزیم های آنتی اکسیدانی در گیاه شیرین بیان (Glycyrrhiza glabra). داروهای گیاهی، 2 (1): 13-7.
  9. محمد آبادی، ب.، ط. سیماکار، و غ. افشارمنش. 1393. بررسی تاثیر اسید سالیسیلیک بر کاهش تنش شوری در گوجه فرنگی (Lycopersicon esculentum Mill. L). اولین همایش ملی کشاورزی، محیط زیست و امنیت غذایی،جیرفت.
  10. محمدخانی، ع.، پ. محقق، و ع.ا. فدائی تهرانی. 1395. اثر سیلیسیم بر افزایش مقاومت به تنش اکسیداتیو ناشی از سفیدک سطحی در کدوی پوست کاغذی(Cucurbita pepo, var. styriaca). علوم و فنون کشت­های گلخانه­ای، 7(27): 61-53.
  11. Baninasab, B. 2009. Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia horticulturae 121(2): 144-148.
  12. Basirat, M., S.M. Mousavi, S. Abbaszadeh, M. Ebrahimi and M. Zarebanadkouki. 2019. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant and Soil, 445(1), 565-575.
  13. Bataglia, O.C., A.M.C. Furlani, J.P.F. Teixeira, P.R. Furlani, J.R. Gallo. 1983. Métodos de análise química de plantas. Instituto Agronômico, Campinas.
  14. Bosnic, D., D. Nikolic, G. Timotijevic, J. Pavlovic, M. Vaculík, J. Samardzic, et al. 2019b. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. Plant Soil 441, 629–641. doi: 10.1007/s11104-019-04151-5
  15. Bosnic, D., P. Bosnic, D. Nikolic, M.nNikolic, and J. Samardzic. 2019a. Silicon and iron differently alleviate copper toxicity in cucumber leaves. Plants (Basel) 8:554. doi: 10.3390/plants8120554.
  16. Cuong, T.X., H. Ullah, A. Datta, and T.C. Hanh. 2017. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Scienc, 24 (5): 283-290.
  17. de Kreij, C., C. Sonneveld, M.G. Warmenhoven, and N.A. Straver. 1992. Guide values for nutrient element contents of vegetables and flowers under glass. 3rd Ed.
  18. Elliott, C.L., and G.H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem. 39, 1118–1119. https://doi.org/10.1021/jf00006a024.
  19. Fan, X., X. Wen, F. Huang, Y. Cai, and K. Cai. 2016. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiologiae Plantarum, 38 (197), https://doi.org/10.1007/s11738-016-2221-8.
  20. 1997. Determination of nitrate and / or nitrate content. Part 2. HPLC/IC method for the determination of nitrate content of vegetables and vegetable products. BS EN 12014-2.
  21. Ghai, N., R.C. Setia, and N. Setia. 2002. Effect of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brescia napus (cv. GSL-1) Phytomorphol, 52: 83-87.
  22. Greger, M., T. Landberg, and M. Vaculik. 2018. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7, 41, doi:10.3390/plants7020041.
  23. Gupta, U.C., J.D.E. Sterlinga, and H.G. Nass. 1973. Influence of various rates of compost and nitrogen on the boron toxicity symptoms in barley and wheat. Canadian Journal of Plant Science 53: 451-456.
  24. Hashempour, A., M. Ghasemzhad, G. Fotouhi, and M.M. Sohani. 2014. The physiological and biochemical response to freezing stress olive plants treated with salicylic acid. Russian J. Plant Physio.61(4): 443-450.
  25. Hu, A.Y., S.N. Xu, D.N. Qin, W. Li, and X.Q. Zhao. 2021. Role of silicon in mediating phosphorus imbalance in plants. Plants 10:51. doi: 10.3390/plants10010051.
  26. Ibrahim, M.F.M., A. Faisal, and S.A. Shehata. 2016. Calcium chloride alleviates water
    stress in sunflower plants through modifying some physio-biochemical parameters. American-Eurasian Journal of Agricultural & Environmental Sciences 16 (4): 677-693
  27. Jones, J.B., B. Wolf, and H,A. Mills. 1999. Plant analysis Handbook, Micro-Macro publishing, Inc, Athens,, pp: 110.
  28. Kaya, C., L. Tuna, and D. Higgs. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr. 29, 1469–1480. doi: 10.1080/01904160600837238.
  29. Khan, M.I.R., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan. 2015. Salicylic acid- induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, Volume 6, doi: 10.3389/fpls.2015.00462.
  30. Koohkan, H., and M. Maftoun. 2016. Effect of Nitrogen– Boron Interaction on Plant Growth and Tissue Nutrient Concentration of Canola (Brassica napus). Journal of Plant Nutrition, DOI: 10.1080/01904167.2016.1143492.
  31. Kord, M., and T. Hathout. 1992. Changes on some growth criteria, metabolic ac-tivities and endogenous hormones in tomato plants consequent to spray-ing with different concentrations of salicyladhyde. Egyptian Journal of Physiological Sci. 1992; 16:117.
  32. Korndörfer, G.H., H.S. Pereira, and A. Nolla. 2004. Análise de silício no solo, planta e fertilizante. GPSi, Uberlândia.
  33. Kostic, L., N. Nikolic, D. Bosnic, J. Samardzic, and M. Nikolic. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil. 419, 447–455. doi: 10.1007/s11104-017-3364-0.
  34. Kováˇcik, J., J. Grúz, M. Baèkor, M. Strnad, and M. Repcák. 2009. Salicylicacid- induced changes to growth and phenolic metabolism in Matricaria chamomilla Plant Cell Reports, 28, 135–143. doi:10.1007/s00299-008-0627-5.
  35. Li, M., Q. Wang, Z. Liu, X. Pan, and Y. Zhang. 2019. Silicon application and related changes in soil bacterial community dynamics reduced ginseng black spot incidence in Panax ginseng in a short-term study. BMC Microbiol. 19:263. doi: 10.1186/s12866-019-1627-z.
  36. Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209, 217–224. doi: 10.1023/A:1004526604913.
  37. Luengwilai, K., M. Saltveit, and D.M. Beckles. 2012. Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum ) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biology and Technology, 63, 116-122.
  38. Marschner, H. Mineral  Nutrition  of  Higher Plants (2nd Ed.). Academic Press Inc., London, UK.
  39. Miura, K., and Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Plant Sci. 5:4. doi:10.3389/fpls.2014. 00004.
  40. Mousavi, S.M., B. Motesharezadeh, H.M. Hosseini, H. Alikhani, and A.A. Zolfaghari. 2018a. Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and environmental safety, 147, pp.206-216.
  41. Mousavi, S.M., B. Motesharezadeh, H.M. Hosseini, H. Alikhani, and A.A. Zolfaghari. 2018b. Geochemical fractions and phytoavailability of zinc in a contaminated calcareous soil affected by biotic and abiotic amendments. Environmental geochemistry and health, 40(4), pp.1221-1235.
  42. Nazar, R., N. Iqbal, S. Syeed, and N.A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168, 807–815. doi:10.1016/j.jplph.2010.11.001.
  43. Neu, S., J. Schaller, and G. Dudel. 2017. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum). Scientific reports, 7:40829; DOI: 10.1038/srep40829.
  44. Noman Sallam, B., T. Lu, H. Yu, Q. Li, Z. Sarfraz, M. Shahid Iqbal, S. Khan, H. Wang, P. Liu, and W. Jiang. 2021. Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fertilizers under Greenhouse Cultivation. Horticulture, 7, 256.
  45. Pavlovic, J., L. Kostic, P. Bosnic, E.A. Kirkby, and M. Nokolic. 2021. Interactions of Silicon With Essential and Beneficial Elements in Plants. Plant Sci., 23 June 2021 | https://doi.org/10.3389/fpls.2021.697592
  46. Sahebi, M., M.M. Hanafi, A. Siti Nor Akmar, M.Y. Rafii, P. Azizi, F. Tengoua, J. Nurul Mayzaitul Azwa, and M. Shabanimofrad. 2015. Importance of silicon and mechanisms of biosilica formation in plants. BioMed Res. Int.
  47. Schaller, J., D. Puppe, D. Kaczorek, R. Ellerbrock, and M. Sommer. 2021. Silicon cycling in soils revisited. Plants 10:295. doi: 10.3390/plants10020295.
  48. Schaller, J., S. Faucherre, H. Joss, M. Obst, M. Goeckede, B. Planer-Friedrich, et al. 2019. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9:449. doi: 10.1038/s41598-018-37104-6.
  49. Shehata, S.A.M., S.I. Ibrahim and A.M. Zaghlool, 2001. Physiological response of flag leaf and ears of maize plant induced by foliar application of kinetin (Kin) and salicylic acid (SA). Annals Agric. Sci. Ain Shams Univ. Cairo, 46(2): 435-449.
  50. Tavallali, V., M. Rahemi, S. Eshghi, B. kholdebarin, and A. Ramezanian. 2010. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera Badami) seedlings. Turkish Journal Agriculture Forestry, 34(4): 349-359.
  51. Usanmaz, S., and K. Abak. 2019. Plant growth and yield of cucumber plants grafted on different commercial and local rootstocks grown under salinity stress. Saudi Journal of Biological Sciences, 26, 1134-1139.
  52. Wang, L.J., and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science 170(4):685-694.
  53. Woodruff, J.R., F.W. Moore, and H.L. Musen. 1987. Potassium, boron, nitrogen, and lime effects on corn yield and earleaf nutrient concentration. Agronomy Journal 79: 520-524.