بررسی اثر پلیمر پلی وینیل استات بر پایداری خاکدانه‌های خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق مؤسسه تحقیقات فنی و مهندسی کشاورزی کرج

2 استادیار پژوهشی مؤسسه تحقیقات فنی و مهندسی کشاورزی کرج

3 مربی پژوهشی مرکز تحقیقات کشاورزی و منابع طبیعی قزوین

چکیده

فرسایش بادی و آبی از عوامل اصلی در آسیب به خاک و منابع طبیعی هستند. در تحقیقات پیشین تأکید زیادی بر نقش پایداری خاکدانه‌ها در کنترل فرسایش خاک و جلوگیری از حرکت و جابجایی آنها توسط عوامل فرسایشی شده است. بدین منظور، استفاده از مواد پلیمری به منظور کنترل فرسایش بادی مورد توجه قرار گرفته است اما مسئله موجود میزان تأثیر و مدت زمان دوام این محصولات در خاک­های مختلف است که می‌بایستی مشخص گردد. این پژوهش در راستای ارزیابی تأثیر امولسیون پلیمری بر پایه پلی وینیل استات (PVA) بر شاخص پایداری خشک خاک­ها، تغییرات آن در طول زمان و انتخاب میزان بهینه در خاک­های مختلف انجام شده است. بدین منظور پس از تهیه سه نمونه خاک با بافت سبک، متوسط و سنگین از نقاط مختلف و انجام آزمایش­های تعیین رطوبت طبیعی نمونه‌ها، دانه‌بندی به طریق هیدرومتری و الک و تعیین حدود آتربرگ خاک بر روی آنها، با استفاده از سه نوع خاک با چهار سطح 0، 25، 40 و 50 گرم از ماده پلیمری در هر متر مربع خاک به ترتیب با غلظت­های 0، 25، 40 و 25 گرم در لیتر، 12 تیمار آزمایشی تهیه گردید. سپس میانگین وزنی قطر خاکدانه خشک (MWD) هر تیمار در سه تکرار و در بازه‌های زمانی 1 روز، 1، 3 و 6 ماه پس از تهیه، اندازه­گیری شد. نتایج تحلیل آماری نشان داد که در بیشتر بازه‌های زمانی مورد نظر، افزودن ماده پلیمری به صورت معنی­داری میزان MWD خاک­ها را نسبت به نمونه‌های تیمار شده با آب (شاهد) افزایش داده‌اند. همچنین، میزان ماده پلیمری و حجم امولسیون پلیمری اضافه شده تواماً بر میزان پایداری خاکدانه تأثیر می‌گذارد. تأثیر تمام تیمارهای پلیمری بر میزان شاخص پایداری خاکدانه­های ایجاد شده در ماسه بادی نسبت به تیمار شاهد حتی پس از 6 ماه هم کاملاً چشمگیر است. مقادیر MWD خاک متوسط تمام تیمارها تا 3 ماه بالاتر از شاهد بوده و پس از 6 ماه، تنها تیمار 50 گرم بر متر مربع ماده پلیمری همچنان دارای مقادیر بزرگتری نسبت به تیمار شاهد است. در خاک سنگین تیمار شده با پلیمر نیز، تنها MWD تیمار 50 گرم بر متر مربع است که پس از 6 ماه با خاک شاهد در سطح 1 درصد تفاوت معنی­دار داشته و همچنان دارای ابعاد بزرگتری نسبت به تیمار شاهد است. سرانجام تیمار با میزان 25 گرم پلیمر بر مترمربع خاک (با غلظت 25 گرم در لیتر) به دلیل آنکه کمترین میزان پلیمر و کمترین میزان حجم امولسیون اضافه شده به خاک را داراست به عنوان گزینه مؤثر انتخاب گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Polyvinyl Acetate Polymer on Stability of Dry Aggregates

نویسندگان [English]

  • M. Movahedan 1
  • N. Abbasi 2
  • M. Keramati 3
1 Agricultural Engineering Reasearch Institute, Karaj, Iran
2 Agricultural Engineering Reasearch Institute, Karaj, Iran
3 Agricultural and Environmental Research Center of Qazvin, Iran
چکیده [English]

Wind and water erosion are among the main causes of damage to the soil and environment. In previous studies, a great emphasis has been placed on the role of aggregates stability in erosion control and prevention of particles movement and displacement. For this purpose, the use of polymeric materials to control wind erosion has been considered, but the amount and duration of their effects on aggregate stability in different soils must be determined. This study aimed to investigate the impact of a Polyvinyl Acetate-based polymeric emulsion on dry aggregate stability, time-variation of dry Mean Weight Diameter (MWD), and optimum amount of polymer in different soils. To do this, three different soils were selected with light, medium, and heavy texture and soil characteristics such as determination of initial water content, particle size analysis, hydrometer tests and Atterberg Limits were determined. Later, 12 treatments were applied using four levels of 0, 25, 40, and 50 g/m2 of polymeric material with concentrations of 0, 25, 40 and 25 gr/lit and with three different soils. Then, in one day, one month, three, and six months intervals after preparation, the MWD of treatments were measured in three replications. Statistical analysis showed that, in many time intervals, application of polymeric material had significantly increased the MWD compared to water treated (control) samples, and both the amount of polymeric material and the volume of added emulsion affected aggregate stability. Compared to the water treated samples, the effect of all polymeric treatments on dry aggregate stability of sandy soil were considerable even after 6 months. MWD values of all polymeric treatments of the silty loam soil were higher than the control samples till 3 months but, after six months, only the MWD of polymeric treatment of 50 gr/m2 was still greater than the control. Also, in polymeric silty caly loam soil, only the MWD of the 50 gr/m2 treatment was still greater than the control samples after six months. Finally, polymeric treatment with 25 gr/m2 application was chosen as effective treatment because of having the lowest applied polymeric material and lowest polymeric emulsion volume.

کلیدواژه‌ها [English]

  • Mean Weight Diameter (MWD)
  • PVA polymer
  1. احمدی، ح.، اختصاصی، م.ر.، فیض‌نیا، س. و قانعی بافقی، م.ج. 1381. بررسی روش های کنترل فرسایش بادی برای حفاظت راه آهن مطالعه موردی: منطقه بافق. مجله منابع طبیعی ایران.55،342-327.
  2. رفاهی، حسینقلی. 1383. فرسایش بادی و کنترل آن. انتشارات دانشگاه تهران. 320ص.
  3. سمائی، ح.ر.، گلچین، ا. و مصدقی، م.ر. 1385. کنترل آلودگی ناشی از فرسایش بادی به وسیله پلیمرهای محلول در آب، همایش خاک و محیط زیست و توسعه پایدار.
  4. عظیم‌زاده، ح.م.، اختصاصی، م.ر.، حاتمی، م. و اخوان، م. 1380. مطالعه تاثیر خصوصیات فیزیکی - شیمیایی خاک در شاخص فرسایش پذیری بادی خاک و ارائه مدل جهت پیشگویی آن در دشت یزد-اردکان. همایش ملی مدیریت اراضی - فرسایش خاک و توسعه پایدار.
  5. علیزاده، ا. (1368)، فرسایش و حفاظت خاک، ترجمه، انتشارات آستان قدس رضوی، 258ص.
  6. قاسمی آریان، ع. 1383. آگروفارستری روشی نوین جهت تثبیت شن­های روان و حفظ تاغزارها. اولین همایش روش­های پیشگیری از اتلاف منابع ملی.
  7. قدیری، ح. 1372. حفاظت خاک. چاپ سوم. انتشارات دانشگاه شهید چمران اهواز، 470 ص.
  8. کردوانی، پ. 1376. حفاظت خاک، انتشارات دانشگاه تهران.
  9. کریمی، ح.، صوفی، م.، حق‌نیا، غ. و خراسانی، ر. 1386. بررسی پایداری خاکدانه‌ها و پتانسیل فرسایش خاک در خاک‌های لوم و لوم رسی شنی: مطالعه موردی دشت لامرد-استان فارس. مجله علوم کشاورزی و منابع طبیعی،14(1)
  10. معماریان، ح. 1377. زمین‌شناسی مهندسی و ژئوتکنیک، انتشارات دانشگاه تهران. شماره 2268.
  11. Bryan, R.B. 1968. The development, use and efficiency of indices of soil erodibility, Geoderma, 2, 5-26.
  12. Chepil, W.S., and Milne, R.A., 1941. Wind erosion in relation to roughness of the surface, soil Sci. 52:417-433.
  13. Chepil, W.S., Woodruff, N.P. 1963. The physics of wind erosion and its control. Adv. in Agron. 15:211-302.
  14. Dong, , Wang, L. and Zhao, S. 2008. A potential compound for sand fixation synthesized from the effluent of pulp and paper mills, Journal of Arid Environments, 72(7):1388-1393.
  15. Hadjiev, A., Hadjiev, P. 2003. On some methods for surface erosion control on tailings ponds and waste fly-ash piles. 50 years Uni. of Mining and Geology “St. Ivan Rilski”, Annual, vol. 46, part 22, Mining and Mineral Processing, Sofia.185-187.
  16. Hagen L.J., 1991. Wind erosion mechanics: Abrasion of aggregated soil, Transaction of the ASAE, Vol. 34(4):831-837.
  17. Hagen, L.J., Lyles, L. 1985. Amount and nutrient content of particles produced by soil aggregate abrasion.In: Proc. of the National Symposium on Erosion andSoil Productivity 8-(85): 1 17- 129.
  18. He, J.J., Cai, O.G., Tang, Z.J., 2008. Wind tunnel experimental study on the effect of PAM on soil wind erosion control, Environ Monit Assess. 145:185–193.
  19. Hoover, J.M., 1987. Dust control on construction sites, Arizona Department of Transportation, Report No. FHWA-AZ86-807. 65p.
  20. Kenneth, N., Nwankwo, P.E., 2001. Polyacrylamide as a soil stabilizer for erosion control. Wisconsin department of transportation. Report No. W1, 06-98.
  21. Klute A., 1986, Methods of soil analysis- Part 1, Madison, Wisconsin, USA,1188p
  22. Le Bissonnais, Y. 1996. Aggregate stability and assessment of soil crustability and erodibility, Theory and practice, Euro. J. of Soil science, Vol. 47., No. 11, 425-437.
  23. Levy, G. J., Levin, J., Shainberg, I. 1995. Polymer effects on runoff and soil erosion from sadie soils, Irrig Sci. 16:9-14.
  24. Liu, J., Jiang H., Bae, S. and Huang, H. 2009. Improvement of water-stability of clay aggregates admixed with aqueous polymer soil stabilizers, CATENA, 77(3):175-179.
  25. Luo, P., 2007. Comparison of wind erosion measurements in a drift sand area in the Netherlands with simulated mass transport by WEPS. MSc Thesis, Wageningen University, 37p.
  26. Pradhan G. and John D., 2009. Erosion wear behaviour of bio-waste reinforced polymer composites. B. Sc. Thesis, National Institute of Technology Rourkela, India. 53p.
  27. Rice M.A., McEwan J.K,. and MullinsE., 1999. A conceptual model of wind erosion of soil surfaces by saltating particles.Earth Surface Processes and Landforms, Volume 24 Issue 5, Pages 383 – 392.
  28. Siddiqi, R.A., Moore, J.C., 1981, Polymer stabilization of sandy soils for erosion control, Transportation Research Record No. 827, General Soils Problems.30-34.
  29. Telysheva, G., Shulga , G. 1995. Silicon-containing polycomplexes for protection against wind erosion of sandy soil. Journal of agricultural engineering research, 62:(4)221-227. 
  30. Tilly G. P., and Sage W., 1970. The interaction of particle and material behavior in erosion processes. Wear 16;447-465.
  31. Wallace, A.,G.A.Wallace, & A.M.Abouzamzam. 1986. Amelioration of sodic soils with Soil Sci .Soc. Am. J.141: 359-362.