اثر کبالت خاک بر برخی شاخص‌های رشد لوبیا چیتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد زراعت دانشگاه شهرکرد

2 استادیار گروه علوم خاک دانشگاه شهرکرد

3 استادیار گروه زراعت دانشگاه شهرکرد

4 استادیار پژوهشی مرکز تحقیقات و منابع طبیعی شهرکرد

چکیده

ضرورت کبالت برای گیاهان هنوز اثبات نشده، اگر چه این عنصر برای رشد برخی گیاهان مفید است. از طرف دیگر کبالت عنصر سنگینی است که همراه برخی پساب‌ها و ضایعات روی خاک تخلیه می‌شود. تاکنون اثر کبالت خاک بر رشد لوبیا چیتی بررسی نشده است. به منظور بررسی اثر کبالت خاک بر تراکم کبالت و شاخص‌های رشد لوبیا چیتی آزمایشی گلدانی در قالب طرح کاملاٌ تصادفی با پنج تیمار (۰، ۲۰، ۷۰، ۱۵۰ و۲۲۰ میلی‌گرم کلریدکبالت بر کیلوگرم خاک خشک) در گلخانه دانشگاه شهرکرد در سال ۱۳۸۹ اجرا شد. در پایان مرحله بلوغ فیزیولوژیکی، اندام‌های لوبیا چیتی (برگ، ساقه و ریشه) جدا و پس از اندازه‌گیری سطح برگ، طول ساقه و طول ریشه، وزن‌تر و خشک آن‌ها نیز تعیین شد، سپس میزان کبالت در ساقه، ریشه و برگ خشک شده اندازه‌گیری شد. رابطه‌ی خطی قوی بین غلظت کبالت خاک و تراکم کبالت در برگ، ساقه، ریشه و در بوته لوبیا چیتی دیده شد (01/0p<). بیشتر کبالت جذب شده در ریشه لوبیا چیتی انباشته شد. در تیمار،۲یعنی ۲۰میلی‌گرم کبالت بر کیلوگرم خاک، تمام شاخص‌های رشد (وزن‌های خشک برگ، ساقه، ریشه و بوته لوبیا چیتی، سطح برگ، طول ساقه و ریشه افزایش یافتند (01/0p<)، در غلظت‌های زیادتر کبالت خاک تمام شاخص‌های رشد تحت تأثیر منفی کبالت قرار گرفته و به صورت خطی کاهش یافتند. ضریب آلومتری در غلظت ۲۰ میلی‌گرم بر کیلوگرم کبالت خاک دارای بیشترین مقدار بود (01/0p<) و سپس کاهش یافت. بنابراین، در غلظت‌های کم کبالت رشد ساقه بیشتر از رشد ریشه افزایش می‌یابد. بر عکس بازدارندگی نسبی رشد ریشه در تیمار؛ ۲  معادل  ۲۰ میلی­گرم کبالت بر کیلوگرم، کاهش و با افزایش کبالت خاک افزایش یافت. در مجموع آستانه تحمل لوبیا چیتی به کبالت ۷۰ میلی‌گرم بر کیلوگرم خاک خشک یا ۳۵۰ میلی‌گرم بر کیلوگرم وزن خشک اندام هوایی لوبیا تخمین زده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Soil Cobalt Concentrations on Some Growth Indices of Pinto Bean

نویسندگان [English]

  • M. Sharafi 1
  • A. Ranjbar 2
  • H. Beigi Harchegani 3
  • R. Iranipour 4
1 Graduate student, Department of Crop Production
2 Assistant professor, Department of Crop Production University of Shahrekord, Shahrekord, Iran
3 Assisstant professor, Department of Soil ScienceUniversity of Shahrekord, Shahrekord, Iran
4 Assissant professor, Agricultural and Natural Resources Research
چکیده [English]

Cobalt has not been categorized as an essential plant nutrient, although it has been shown to be useful to some crops. On the other hand, cobalt is discharged on soils as part of some wastes and effluents. The effect of cobalt on the growth of pinto bean has not been studied yet. To evaluate the effect of cobalt on pinto bean, a pot experiment was carried out in 2010 in the Shahrekord University greenhouse with 5 soil cobalt levels (0, 20, 70, 150 and 220 mg Co/kg dry soil) in a completely randomized design. After physiological maturity, leaf area, stem length, root length, stem and root dry weights were measured. Strong linear relationships were observed between soil cobalt concentration and cobalt concentration in root, stem, and leaf and, therefore, the whole plant (p<0.01).  Most of the absorbed cobalt was retained in the root. At 20 mg Co/kg soil, all growth indices, including allometric coefficient, improved (p<0.01). All growth indices were negatively affected in a linear manner with increasing soil cobalt concentration. Relative growth inhibition initially decreased but increased afterwards with higher soil cobalt concentrations. Overall, a tolerance threshold of 70 mg Co/kg of dry soil (or 350 mg Co/kg dry weight of aerial parts) was estimated for pinto bean.

کلیدواژه‌ها [English]

  • Allometric coefficient
  • Cobalt concentration
  • Cobalt tolerance threshold
  • Relative growth
  1. امامی، ع. ۱۳۷۵. روش‌های تجزیه گیاه. مؤسسه تحقیقات آب و خاک کشور. نشریه فنی شماره ۹۸۲.
  2. باقری، ع. محمودی، ع.ا. و دین قزلی، ف. ۱۳۸۰. زراعت و اصلاح لوبیا. جهاد دانشگاهی مشهد. ۵۵۶ صفحه.
  3. حسینی، ر. ۱۳۷۶. آلودگی‌های منابع آب و برنامه‌ریزی جهت کاهش آلودگی‌ها. پایان نامه کارشناسی ارشد رشته برنامه‌ریزی و مدیریت محیط زیست. دانشکده محیط زیست دانشگاه تهران.
  4. شرفی، م. رنجبر، ا. و بیگی هرچگانی، ح. 1389. تأثیر غلظت‌های مختلف کبالت بر کلروفیل a و کلروفیل b و کلروفیل کل در لوبیا چیتی. مجله پ‍ژوهش آب و خاک تبریز. در دست داوری.
  5. کوچکی، ع. و بنایان، م. ۱۳۶۸. زراعت حبوبات. انتشارات جاوید. ۲۳۶ صفحه.
  6. کوچکی، ع. و سرمدنیا، غ. 1377. فیزیولوژی گیاهان زراعی (ترجمه). انتشارات جهاد دانشگاهی مشهد. 467 صفحه.
  7. مجنون حسینی، ن. 1372. حبوبات در ایران. انتشارات جهاد دانشگاهی تهران. 240 صفحه.
  8. Ahmed, S., and H.J. Evans. 1960. Cobalt, a micronutrient element for the growth of soybean plants under symbiotic conditions. Soil Science. 90:205-210.
  9. Bakkaus, E.B., B. Gouget, J.P. Gallien, H. Khodja, F. Carrot, J.L. Morel, and R. Collins. 2005. Concentration and distribution of cobalt in higher plants : The use of micro-PIXE spectroscopy . Nuclear Instruments and Methods in Physics Research Section B. 231:350-356.
  10. Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal. 54:464-465.
  11. Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-total. In: Page A.L., Miller R.H. Keene D.R. (eds), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd American Society of Agronomy, Madison. 595-624.
  12. Castelan, M., P. Vivin, and J.P. Gaudillere. 2002. Allometric relationships to estimate seasonal above ground vegetative and reproductive biomass of Vitis vinifera Annals of Botany. 89:401-408.
  13. Chatterjee, C., R. Gopal, and B.K. Dub. 2006. Physiological and biochemical responses of French bean to excess cobalt. Journal of Nutrition. 29:127-136.
  14. Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212:475-486.
  15. Delwiche, C.C., C.M. Johnson, and H.M. Reisenauer. 1961. Influence of cobalt on nitrogen fixation by medicago. Plant Physiology. 36:73-78.
  16. EL-Sheekh, M.M., A.H. EL-Nagger M.E.H. Osman and E. EL-Mazaly. 2003. Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Journal of Plant Phsiology 15:159-
  17. Gabrielli, R., C. Mattioni, and O. Vergnano. 1991. Accumulation mechanism and heavy metal tolerance of a nickel hyperaccumulator. Journal of Plant Nutrition. 14:1067-1080.
  18. Gad, N., and H. Kandil. 2009. The influence of cobalt on Sugar beet Beta vulgaris production. International Journal of Academic Research. 1(2):52-58.
  19. GraphPad Software, Inc. 2012.  Comparing fits to two sets of data (same equation). http://graphpad.com/curvefit/1_model__2_datasets.htm.  Accessed on 10 July 2012.
  20. Gregory, R.P.G., and A.D. Bradshaw. 1965. Heavy metal tolerance in population of Agrosis tenuis and other grasses. New Phytologist. 61:131-143.
  21. Hallova, H., S. Sozudogrus, and S. Taban. 2009. Effect of cobalt on some physiological parameters of common bean Phaseolus vulgaris Asian Journal of Chemistry. 21(4):3307-3309.
  22. Ibrahim, A., S.O. El-Abd, and A.S. El-Beltage. 1989. A possible role of cobalt in salt tolerance of plant. Egyption Journal of Soil Science. 14:359-370.
  23. Jaleel, A.C., K. Jayakumar, and Z. Chang-xing, M.M. Azooz. 2009. Antioxidant protentials protect Vigna radiate wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics Journal. 2(3):120-126.
  24. Janzen, H.H. 1993. Soluble salts. In: Carter MR (ed), Soil sampling and methods of analysis. Lewis, Boca Ratoon, FL. 161-166.
  25. Jayakumar, K., A.C. Jaleel, and P. Vijayarengan. 2007. Changes in growth, biochemical constituents, and antioxidant potentials in radish Raphanus sativa under cobalt stress. Turkish Journal of Botany. 31:127-136.
  26. Jayakumar, K., A.C. Jaleel, M. Azooz, P. Vijayarengan, Gomathinayam, and R. Panneerselvam. 2009. Effect of different concentrations of cobalt on morphological parameters and yield components of soybean. Global Journal of Molecular Sciences. 4(1):10-14.
  27. Kandil, H. 2007. Effect of cobalt fertilizer on growth, yield and nutrients of Faba bean Vicia faba plants. Applied Sciences. 3(9):876-872.
  28. Langston, R. 1956. Studies on marginal movements of cobalt-60 in cabbage. Proceedings of American Society of Horticulture Science. 68:366-369.
  29. Lindsay, W.L., and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Socity of America Journal. 42:421-428.
  30. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. In: Page A.L., Miller R.H. Keeney D.R. (eds), Methods of soil analysis. Part 2: Chemical and microbiological properties. 2nd American Society of Agronomy, Madison. 403-430.
  31. Parmar G. and V. Chanda. 2005. Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of Phaseolus vulgaris Turkish Journal of Biology. 29:15-21.
  32. Rahman Khan, M., and M. Mahmud Khan. 2010. Effect of varying concentrations of nickel and cobalt on the plant growth and yield of chick pea. Australian Journal of Basic and Applied Sciences. 4(6): 1036-1046.
  33. Samaryoon, A.B., and W.E. Rauser. 1979. Carbohydrate level and photoassimilation export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel and zinc. Plant Physiology. 63:1165-1169.
  34. Setia, R.C., J. Kaila and C.P. Malik. 1988. Effect of NiCl2 toxicity on stem growth and early development in Triticum aestivum Phytomorphology. 38:21-27.
  35. Sharma D.C. and C.P Sharma. 1993. Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communications. 21:317-322.
  36. Simard, R.R. 1993. Ammonium acetate-extractable elements. In: Carter M.R. (ed), Soil sampling and methods of analysis, Boca Raton, FL, USA, Lewis Publishers. Pp. 390-420.
  37. Statsoft Inc. 2006. STATISTICA (statistical data analysis system). Version 8.0. www.Statsoft.com.
  38. Wilkins D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist. 80:23-33.