تأثیر کمبود روی بر رشد، درصد کلنیزاسیون میکوریزی ریشه و جذب روی، فسفر و آهن در گیاه ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناس ارشد خاکشناسی دانشگاه تبریز

2 عضو هیأت علمی گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

3 عضو هیأت علمی گروه علوم گیاهی، دانشکده علوم، دانشگاه تبریز

4 عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی

چکیده

کمبود روی یکی از شایعترین کمبودهای عناصر ریز­مغذی در گیاهان است و باعث کاهش در تولید محصول می­شود. هدف از این پژوهش، بکارگیری قارچ­های میکوریز آربوسکولار جهت رفع کمبود Zn و تأثیر آن بر قابلیت جذب روی، فسفر، آهن و رشد گیاه ذرت بود. این آزمایش در دو قسمت انجام گرفت که قسمت اول به صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور شامل قارچ در دو سطح ( –Mو +M به ترتیب بدون قارچ و تلقیح شده با
G. intraradices) و دو سطح کمبود و کفایت روی (به ترتیب 0 و16 میکرو مولار) در بستر پرلیت اجرا شد. هر تیمار شامل چهار تکرار در گلدان­های پلاستیکی بود. قسمت دوم بصورت طرح پایه کاملاً تصادفی با دو سطح قارچی (-M و +M به ترتیب بدون قارچ و G. intraradices) در چهار تکرار و در بستر پرلیت اجرا شد. در قسمت اول نتایج نشان داد که در تیمارهای با کمبود روی، گیاهان میکوریزی به طور معنی­داری کمتر از گیاهان غیر­میکوریزی دچار کاهش رشد شدند. کمبود روی باعث افزایش معنی­داری در غلظت و مقدار فسفر بخش هوائی و ریشه گیاهان میکوریزی و غیرمیکوریزی شد. گیاهان میکوریزی و با کمبود روی دارای بیشترین غلظت و مقدار آهن و گیاهان غیرمیکوریزی و با روی کافی، دارای کمترین غلظت و مقدار آهن بودند. کمبود روی باعث افزایش درصد کلنیزاسیون ریشه به میزان 58% در گیاهان میکوریزی شد و در قسمت دوم این پژوهش مشاهده شد که گیاهان میکوریزی قادر به جذب روی از منابع نامحلول آن (ZnO) هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Zn Deficiency on Growth, Percentage of Root Colonization, and Absorption of Zinc, Phosphorus, and Iron in Mycorrhizal Inoculated Maize

نویسندگان [English]

  • M. Afsharnia 1
  • N. Aliasgharzad 2
  • R. Hajiboland 3
  • Shahin Oustan 2
  • Ali Reza Tavasolee 4
1 Graduated MSc soil science from university of Tabriz;
2 Faculty member of Soil Science, Faculty of Agriculture, University of Tabriz
3 Faculty member of the Department of Plant Sciences, Faculty of Science, University of Tabriz
چکیده [English]

Zinc deficiency is one of the most common micronutrients deficiencies in plants and reduces production. The purpose of this research was to use arbuscular mycorrhizal fungi and study its effect on Zn deficiency in corn and the plant ability to absorb zinc, phosphorus, and iron, and growth of corn plants. This experiment was performed in two parts. The first part was a factorial experiment conducted in completely-randomized design (CRD) with two factors zinc-deficient (-Zn) and zinc-sufficient (+Zn) (0 and 16 μM) and two fungi levels: +M and -M (mycorrhizal and non-mycorrhizal) cultured in perlite in plastic pots. Each treatment had four replicates. The second part of the experiment was conducted as completely-randomized design (CRD) with two levels of fungi (+M and -M) and four replicates cultured in perlite. The first results showed that in treatments with zinc deficiency, mycorrhizal plants had significantly less growth than non-mycorrhizal plants. Zinc deficiency caused a significant increase in the concentration and amount of phosphorus in shoot and root of mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants with zinc deficiency had the highest concentration and amount of iron and non-mycorrhizal plants with sufficient zinc had the lowest concentration and amount of iron. Zinc deficiency increased the percentage of root colonization of mycorrhizal plants to 58%. In the second part of this study, it was observed that mycorrhizal inoculated plants were able to absorb zinc from the insoluble sources of zinc (such as ZnO).

کلیدواژه‌ها [English]

  • maize
  • root colonization
  • mycorrhizal fungi
  • zinc deficiency
  1. افشارنیا، م. 1388.بررسی تأثیر کمبود روی بر گیاه ذرت میکوریزی و اثر تنش­های نوری بر آن. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی دانشگاه تبریز
  2. توسلی، ع. 1378. بررسی تأثیر قارچ­های بومی میکوریز VA در رشد ذرت و جذب فسفر و برخی عناصر کم مصرف در سطوح مختلف فسفر. پایاننامه کارشناسی ارشد،دانشکده کشاورزی، دانشگاه تبریز.
  3. خلدبرین، ب. و ط. اسلام زاده. 1380. تغذیه معدنی گیاهان عالی (ترجمه). در دو جلد. انتشارات دانشگاه شیراز.
  4. رونقی، ع.، ا. ادهمی و ن. کریمیان. 1381. تأثیر فسفر و روی بر رشد و ترکیب شیمیایی ذرت. علوم و فنون کشاورزی و  منابع طبیعی. 6: 105-118.
  5. سالار دینی، ع.ا. 1382. حاصلخیزی خاک. انتشارات دانشگاه تهران.
  6. صالح راستین، ن. 1380. کودهای بیولوژیک و نقش آنها در راستای نیل به کشاورزی پایدار. نشر آموزش کشاورزی.
  7. Abbott, L.K. and A.D.Robson. 1985. Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol, 99: 245-255.
  8. Allen, M.F. 1992. Mycorrhizal Functioning. Chapman and Hall, New York.
  9. B.J., 2002. Zinc-the vital micronutrient for healthy, high-value crops. International Zinc Association (IZA) available in http://www.interzinc.org/pdf/SustainableDevelopmentFactsheets.pdf.
  10. Alloway, B.J., 2008. Zinc in soils and crop nutrition. Second edition, published by IZA and IFA,Brussels, Belgium and Paris, France.
  11. Bolan, N.S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 134: 189-207.
  12. Bukvić1, G., M. Antunović, S. Popović, M. Rastija, 2003. Effect of P and Zn fertilisation on biomass yield and its uptake by maize lines (Zea mays), Plant Soil Environ, 49(11):505-510.
  13. J. W. G. and A. E. Ashtord. 1989. Reducing activity at  the root surface in Eucaliptus Pilularris-Pisolithus tinctorius ectomycorrhizas. Plant Phytology. 16:99-105.
  14. Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol, 146: 185-205.
  15. Cakmak, I. Role of mineral nutrients in tolerance of crop plants to environmental stress factors Plant and Cell Physiology. 38: 433-440.
  16. Cardoso, I.M. and T.W. Kuyper. 2006. Mycorrhizas and tropical soil fertility. Agri. Ecosyst. Environ, 116: 72-84.
  17. C., H. Wolfgang, J.H. Heidi, R.Volker and G. Eckhaed. 1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza., 8:35-39.
  18. Christie, P., Li, X. and B. Chen. 2004. AM can depress translocation of zinc to shoot of host plants in soils moderately polluted with zinc. Plant Soil, 261: 209-217.
  19. Clark, R.B. and S.K. Zeto. 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline Soil. Soil Biochem., 28:1495-1503.
  20. Cottenie, A.1980. Soil and Plant Testing. FAO Soils Bulletin, No. 38/2, pp. 94-100.
  21. Degryse, F., E. Smolders. and D. R. Parker. 2007. Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-.buffered solutions. Plant Soil. 289,171-185.
  22. Faber, B.A., , R.J. Zasoski, R.G. Burau, and K. Uriu. 1990. Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant soil, 129 (2):121-130.
  23. M., C. Sbrana, A. S. Citernesi, L. Avio, A. Gollott, V. Gianinazzi-Pearson, and S. Gianinazzi. 1994. Recognition and infection process basis for host specificity of arbuscular mycorrhizal fungus. In: Impact of Arbuscular Mycorrhizas on Sustainable Agricultur and Natural Ecosystems, Giannassi, S. and Schuepp, H. (Eds.). Brikhauser Verlag Basel. Switzerland pp. 61-71.
  24. Gupta, P. K. and K. K. Vyas. 1994. Effect of phosphorus, zinc and molybdenum on the yield and quality of soybean. Legume Res. 17: 5-7.
  25. Hajiboland, R., N. Aliasgharzad, R. Barzeghar. 2009. Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant soil.environ, 55(3): 93–100.
  26. Hendry, G.A.F. 1993. Oxygen, free radical process and seed longevity. Seed Science Research, 3:141-153.
  27. Karimian, N. 1995. Effect of nitrogen and phosphorus on zinc nutrition of corn in a calcareous soil. J . Plant Nutr. 18:2261-2271.
  28. Kothari, S. K., H. Marschner. and V. Romheld. 1991. Contribution of the VA mycorrhizal hyphae in acquisitions of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131: 177-185.
  29. Lambert, H. D., D. E. Baker. and H. Jr. Cole. 1979. The role of mycorrhizae the interactions of phosphorus with zinc, copper, and other elements. Soil. Soc. Am. Journal, 43:976-980.
  30. Maftoun, M. and Karimian. 1989. Relative efficiency of two zinc sources for maize (Zea mays ) in two calcareous soils from an arid area of Iran. Agronomie 9: 771-775.
  31. Malakouti, M.J. (2007) Zinc is a neglected element in the life cycle of plants. Middle.eastern and russian journal of plant science and biotechnology, 1 (1):1-12.
  32. Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edn. London, UK, Academic Press.
  33. Neuman, E. and E. Geouge. 2004. Colonization with the AMF Glomus mosseae (Nicol and Gerd.) enhanced phosphorus uptake from dry soil in sorghum bicolor (L.) Plant Soil, 261: 245-255.
  34. Norrif, I.R., D.J. and A. K. Varma. 1992. Methods in Microbiology. Vol 24. Techniques for Study of Mycorrhiza. Academic press, London.
  35. Ortas, I., D. Ortakci, Z. Kaya, A. Cinar, N. Onelge. 2002. Mycorrhizal dependancy of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr, 25:1263–1279.
  36. Pairunan, A.K., A.D. Robson, and L.K. 1980. The effectiveness of vesicular – arbuscular mycorrhiza in increasing growth and phosphorus uptake of  subterranean clover from phosphorus of  different solubilities. New Phytol, 84: 327-338.
  37. Parker, D. R.1997. Response of six crop species to solution zinc activities buffered with Soil Sci. Soc. Am. J. 61:161-167.
  38. Rahimi, A. and W. Bussler. 1979. Die Entwicklung und der Zn-, Feund P-Gehalt hoherer Pflanzen in Abhangigkeit vom Zinkangebot. Zeitschrift fuX r Pflanzenernaehrung und Bodenkunde, 142:15-27.
  39. Rengel, Z. and R. Graham. 1996. Uptake of zinc from chelate-buffered nutrient solutions by .wheat genotypes differing in zinc efficiency. Journal of  Experimental Botany, 47: 217-.
  40. Subramanian, K.S., C. Bharathi and A. Jegan. 2008. Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biol Fertil Soils, 45:133–144.
  41. Tarafdar, J.S., H. Marschner. 1994. Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plant. Soil Sci. Plant Nutr, 40 (4): 593-600.
  42. Valentain, A. J., B. A. Osborne and D. T. Mitchell.   Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Hort. Sci. 88: 177-187.
  43. Waling, I., W.V. Vark, V.J.G. Houba and J.J. Vanderlee. 1989. Soil and plant analysis a series of syllabi. Part  Plant Analysis Procedures. Wageningen Agriculture University.
  44. Warnock, R.E. 1970. Micronutrient uptake and mobility within corn plants (Zea mays ) in relation to phosphorus-induced zinc deficiency. Soil Science Society of American Proceedings, 34: 765-769.
  45. Westerman, L.Z. 1990. Soil Testing and Plant Analysis. Soil Science Society of America, INC. Madison, Wisconsin, USA.