پهنه‌بندی احتمال حضور آرسنیک در برخی خاک‌های آهکی دشت قروه با استفاده از رگرسیون لجستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان

2 عضو هیأت علمی گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان

3 کارشناس ارشد آزمایشگاه گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه کردستان

چکیده

آرسنیک فلزی سمی است که وجود آن در محیط زیست آسیب جدی را به انسان و سایر موجودات زنده وارد می‌آورد. وجود کانی‌های حاوی آرسنیک در مواد مادری از دلایل عمده آلودگی خاک به آرسنیک می‌باشد. هدف از انجام این تحقیق، پهنه­بندی احتمال حضور عنصر آرسنیک و یافتن مهمترین پارامترهای مؤثر بر غلظت و حلالیت آن در خاک­های آهکی دشت قروه واقع در استان کردستان با استفاده از مدل رگرسیون لجستیک می‌باشد. بدین منظور، نمونه‌برداری خاک در عمق 10-0 سانتی­متری از 107 نقطه زیر حوزه شرقی منطقه مطالعاتی به روش سیستماتیک و با فواصل شبکه 9/0×9/0کیلومتر انجام شد. خصوصیات فیزیکوشیمیایی نمونه‌های جمع آوری شده از قبیل pH، هدایت الکتریکی، ماده آلی، ظرفیت تبادل کاتیونی، بافت خاک، میزان اکسید­های آزاد آهن و آنیون­های کربنات، فسفات و سولفات به عنوان متغیرهای اصلی مؤثر بر غلظت و حلالیت آرسنیک مورد بررسی قرار گرفت. نتایج رگرسیون نشان داد که ارتباطات معنی­داری میان اکسیدهای آزاد آهن، فسفات، ظرفیت تبادل کاتیونی و خصوصیات زمین­شناسی محدوده مورد مطالعه با آرسنیک وجود دارد. تحلیل نتایج حاصل از آزمون Predicted Percentage Correct Test (PPCT) و شاخص Receiver Operating Characteristic (ROC) به­ترتیب با مقادیر 7/89 و 4/95 درصد قابلیت مدل رگرسیون لجستیک در شناسایی عوامل مؤثر بر پهنه‌بندی و غلظت و حلالیت آرسنیک را تأیید نمود. ارزیابی صحت نقشه پهنه­بندی احتمال حضور آرسنیک نیز به روش Success Rate Curve (SRC) معادل 18/84 درصد برآورد شد که نقشه­نهایی حاکی از تمرکز آرسنیک در دو منتهی الیه غربی و شرقی‌ منطقه مطالعاتی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Zoning Arsenic Presence Possibility in Calcareous Soils of Qorveh Plain Using Logistic Regression

نویسندگان [English]

  • S. Majedi 1
  • B. Souri 2
  • A. Shirzadi 3
1 Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2 Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
3 Department of Watershed Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Arsenic is a toxic metal whose presence in environment may cause serious damages to human and other forms of life. Existence of arsenic containing minerals among parent materials is a major factor contributing to arsenic pollution in soils. The objective of this research was the zoning of arsenic presence possibility and also recognition of the parameters affecting its concentration and solubility in calcareous soils of Qorveh plain in Kurdistan province, in Iran, using logistic regression model. Therefore, systematic soil sampling was conducted for the depth of 0-10cm surface soil in 107 sampling points across the eastern sub-basin of Qorveh plain following a grid distribution having intervals of 0.9×0.9km. Physico-chemical properties of the collected samples including acidity, electrical conductivity, organic matter, cation exchangeable capacity, soil texture, free iron oxides and anions of carbonates, phosphates, and sulfates were investigated as the major variables affecting concentration and solubility of arsenic in soil. The results showed that there were significant relationships between free iron oxides, phosphates, cation exchangeable capacity and geological characteristics with soil arsenic across the study area. Analysis of the results using the Predicted Percentage Correct Test (PPCT) and the index of Receiver Operating Characteristic (ROC) yielded values of 89.7% and 95.4%, respectively, which approved reliability of the logistic regression model to recognize influential parameters on zoning, concentration, and solubility of soil arsenic. Evaluation procedure to verify the map of arsenic presence possibility using Success Rate Curve (SRC) method yielded a value of 84.18%, which emphasized on more arsenic concentration in extreme east and west parts of the study area.

کلیدواژه‌ها [English]

  • Map of arsenic presence
  • Systematic method
  • PPCT
  • ROC
  1. جهانگیری، ش، ب. سوری و ه. بدخشان. 1390. رابطه خصوصیات مختلف فیزیکوشیمیایی برخی خاک‌های آهکی حوزه آبخیز دشت قروه با آرسنیک خاک. مجله پژوهش­های خاک (پذیرش شده).
  2. خداکرمی، ل.، ع. سفیانیان، الف محمدی توفیق و ن. میرغفاری. 1390. بررسی غلظت عناصر سنگین مس، روی و آرسنیک خاک با استفاده از RS و GIS، مطالعه موردی: حوزه کبودرآهنگ، رزن و خونجین-تلخاب در استان همدان. مجله کاربرد سنجش از دور و GIS در علوم منابع طبیعی .سال دوم. شماره 1.صفحات 92-79
  3. سازمان زمین‌شناسی و اکتشافات معدنی کشور. 1999. نقشه 100000/1 زمین‌شناسی.
  4. سیاره، ع، م. فنودی و الف دادستان. 1386. بررسی های زمین­شناسی زیست محیطی در قروه-بیجار، گزارش مقدماتی، سازمان زمین­شناسی و اکتشافات معدنی کشور.
  5. محمدی، ج. 1385. آمار مکانی، انتشارات پلک، ص 279-262.
  6. Ayalew, L., H. Yamagishi, H. Marui and T. Kanno. 2005. GIS-based susceptibility mapping with comparisons of result from methods and verifications. The Journal of Engineering Geology, 81: 432-445 pp.
  7. Bai, Sh. J., Wang. G.N., Lu. P.G., Zhou. Sh.Sh., Ho and S.N., Xu. 2010. GIS based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three gorges area, china. Geomorphology, 115:23-31.
  8. Beuerlein and W. Schmidt. 1993. Grid soil sampling and fertilization. The Ohio State University,. Agmnomy Technical Report 9302 .
  9. Blackmore, L.C., P.L. Searle and B.K. Daly. 1987. Methods for chemical analysis of soils. NZ Soil Bureau, Lower Hutt. New Zealand. Department of Scientific and Industrial Research.
  10. Brannon, J. M. & Patrick W. H. 1987. Fixation, transformation, and mobilization in sediments. Environmental Science and Technology. 21: 450-459.
  11. Cairney, T. 1987. Soil cover reclamations, in :Reclaiming contaminated land , ed.T. Cairney Blackie, Glasgow, pp.144-169.
  12. Cao, X., L.Q. Maa and A. Shiralipour. 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution, 126:157–167.
  13. Chau, K.T., R.H.C. Wong, J. Lin and C.F. Lee. 2004. Rock fall hazard analysis for Hong Kong based on Rock fall Inventory. Rock Engineering Journal, 36:383-408.
  14. Chau, K.T and J.E. Chan. 2005. Regional bias of landslide data in generating susceptibility maps using logistic regression for Hong Kong Island. Original Article, 280-290 pp.
  15. Day, P.R. 1965. Particle fractions and particle-size analysis. In Black, C.A. ed., Methods of soil analysis: Part1. American Society of Agronomy, 545-567
  16. Fazal, M.A. and T. Kawaci. 2001. Extent and severity of ground water arsenic contamination in Bangladesh. Water Int, 26(3): 370-37.
  17. Frost, R. R. & Griffin, R. A. 1977. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Science Society of American Journal. 41:53-57.
  18. Giacomino, A., M. Malandrino, O. Abollino, M. Velayutham, T. Chinnathangavel, and E. Mentasti. 2010. An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination. Environmental Pollution, 158: 416–423.
  19. Goldberg, S. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science. Soc. Am. J., 66:413-421.
  20. Hopkins, D.W. 2006. Carbon mineralization. In Carter, M.R. and Gregorich, E.G. eds., Soil Sampling and method of analysis, Taylor and Francis Group, 589-598.
  21. Ihuaku, A., J. Ingwersen, J. Utermann and T. 2009. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, 152:104–112.
  22. 1993. Procedures for soil analysis-vol. 4. International soil reference and information center, Food and Agriculture organization of the united nation.Technical paper 9.
  23. Iswar, D., S. Sashikant, V.W. Cees, S. Alfred and H. Robert. 2010. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas, India. Geomorphology, 114:627-637.
  24. Jain, A. and R.H. Leopart. 2000. Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. Journal of Environmental Quality, 29(5):1422–1430.
  25. Lado, L.R., D.A. Polya and A. Hegan. 2008. A logistic regression method for mapping the arsenic hazard risk in shallow, reducing groundwater in combodia, the mineralogical Society. 22: 1-20.
  26. Lee‚ C.K., K.S. Low and N.S. Hew. 1991. Accumulation of arsenic by aquatic plants. The Science of the Total Environment‚ 103:215-227.
  27. Lee, S. 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Remote Sensing 26(7):1477-1491
  28. Lee, S. 2004. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. The Journal of Environmental Management, 34: 223-232 .
  29. Lee, S. 2004. Application of frequency ratio and logistic regression models to landslide susceptibility mapping using GIS. Environmental Management 34(2):223–232.
  30. Lee, S. and T. Sambath. 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50:847-855
  31. Luo, W., T. Y. Wang, J.P. Lu, Y. Giesy, Y. Shi, Y. Zheng, Y. Xing, and G. Wu. 2007. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metal in soils. Environmental Pollution,146: 567-576.
  32. Mazumder, D.N.G. 2003. Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in west Bengal.J.Environ. Sci. Health A. 38: 141-163.
  33. Masscheleyn, P.H., R.D. Delaune and W.H. Patrick.1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol., 25:1414–1419.
  34. Mahimairaja, S., N.S. Bolan and D.C. Adriano. 2005. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron., 86: 1-82.
  35. McLean, E. O. 1982. Soil pH and lime requirement. Agronomy, 9:199-223.
  36. Meng, X., P. Kofiatis and S. Bang. 2002. Combined effects of anions on arsenic removal by iron hydroxides. Toxicology Letters, 133(1):103-111.
  37. Mench, M., J. Vangronsveld, H. Clijsters, N.W. Lepp and R. Edwards. 2000. In situ metal immobilisation and phytostabilisation of contaminated In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, Florida,USA
  38. Peryea, F. J. 1991. Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Science Soc. Am. J., 55:1301-1306.
  39. Pradhan, B. 2010. Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modeling. Environmental Ecology and Statistics (DOI 10.1007/s10651-010-0147-7), 23 pp.
  40. Quaghebeur, M, A. Rate, Z. Rengel, and C. Hinz. 2005. Desorption Kinetics of Arsenate from Kaolinite as Influenced by pH J. Environ. Qual., 34:479–486.
  41. Sadiq, M. 1997. Arsenic chemistry in soils: An overview of thermodyEnviron.namic predictions and field observations. Water Air and Soil Pollution, 93:117–136.
  42. Shaw, J. N. and. L.T. West. 2002. Sesquioxides. In Encyclopedia of soil science, ed. R. Lal,. New York: Marcel Dekker., 1192-1196
  43. Bai, S. 2010. GIS based logistic regression for landslide susceptibility mapping of the zhongxian segment in the three gorges area, China.Geomorpholgy, 115:23-31.
  44. Chauhan, S., M. Sharma and M.K. Arora. 2010. Landslide susceptibility zonation of the Chamoli region Garhwal Himalayas using logistic regression model. Landslides, 7:411-423.
  45. Sheppard, S.C. 1991. Summary of phytotoxic levels of soil arsenic. Environmental Science Branch,AECL Research , Whiteshell Laboratories,Pinawa,ROE ILO, Canada
  46. Smith, E., R. Naidu and A.M. Alston. 2002. Chemistry of inorganic arsenic in soils: ii. effect of phosphorus, sodium and calcium on arsenic sorption. Journal of Environmental Quality, 31: 557–563.
  47. Smedley, P. L. and D.G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17:517-568.
  48. Violante, A. and M. Pigna. 2002. Competitive sorption of arsenate and phosphate on different clay mineral and soils. Soil Science Am. J., 1788-1796.