بررسی تأثیر گونه‌های مختلف باکتری سودوموناس بر عملکرد، اجزای عملکرد و جذب فسفر سه رقم برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی مازندران، ساری

2 عضو هیأت علمی موسسه تحقیقات خاک و آب، کرج

3 عضو هیأت علمی مؤسسه تحقیقات خاک و آب، کرج

چکیده

استفاده از باکتری­های افزاینده رشد از طریق مکانیسم­های مستقیم و غیر مستقیم می­تواند باعث افزایش رشد و عملکرد در گیاهان زراعی شود. در این آزمایش تأثیر گونه­هایی از باکتری سودوموناس با توان حل کنندگی فسفات بر عملکرد، پارامترهای رشد و جذب فسفر در سه رقم برنج مورد مطالعه قرار گرفت. اثر این گونه­ها از طریق انجام یک آزمایش گلدانی به شکل فاکتوریل در قالب طرح کاملاً تصادفی و در چهار تکرار بررسی شد. در این آزمایش ارقام برنج شامل: طارم، ندا و خزر و شش سویه از باکتری سودوموناس: GO11, GO12, GO15, GU10, MZ3, MZ16 همراه با یک تیمار بدون تلقیح، مورد ارزیابی قرار گرفت. در مرحله گلدهی وزن­تر و خشک اندام هوایی گیاه و جذب فسفر در گیاه، و در مرحله برداشت محصول، عملکرد دانه، وزن هزار دانه، تعداد خوشه، تعداد سنبلچه، تعداد دانه در خوشه، ارتفاع بوته و جذب فسفر در دانه اندازه­گیری شد. نتایج حاصل از اجرای این تحقیق نشان داد که بر اساس آزمون دانکن در سطح پنج درصد، در هر سه رقم مورد مطالعه، اختلاف معنی­داری بین پارامترهای اندازه­گیری شده وجود داشته و بیشترین عملکرد دانه از رقم ندا حاصل شد. همچنین تلقیح با سویه­هایی از باکتری سودوموناس، همه پارامترهای رشد را افزایش داد و سویهPseudomonas fluorescens GO15 ، بیشترین تأثیر را بر عملکرد دانه برنج داشت که نسبت به تیمار بدون تلقیح (شاهد)، 5/24% افزایش نشان داد. نتایج حاصل از اثر متقابل ارقام مختلف برنج و سویه­های باکتری نشان داد که بیشترین عملکرد دانه و پارامترهای رشد از تلقیح سویه GO15 Pseudomonas fluorescens و رقم ندا حاصل شد. جذب فسفر در گیاه و دانه با تلقیح سویهPseudomonas fluorescens GO12 و به ترتیب با رقم ندا و خزر حاصل شد. بر اساس نتایج حاصل از این آزمایش، سویه­های باکتری سودوموناس بر عملکرد دانه برنج و جذب فسفر در گیاه و دانه مؤثر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Different Strains of Pseudomonads on Yield, Yield Components, and Phosphorus Uptake of Three Rice Cultivars

نویسندگان [English]

  • Mahmoud Reza Ramezanpour 1
  • H. Asadi Rahmani 2
  • K. Khavazi 3
1 Agricultural and Natural Resources Research Center of Mazandaran, IranSoil and Water Department, , Agricultural Natural Resources Research Centre of Mazandran ,Sari, Iran
2 Soil and Water Research Institute, Karaj, Iran
3 Soil and Water Research Institute, Karaj, Iran
چکیده [English]

Plant growth promoting rhizobacteria can enhance growth and yield of different crops through direct and indirect mechanisms. In this experiment, effect of phosphate solubilizing pseudomonads strains on yield, growth parameters and phosphorus uptake of three rice cultivars was studied. The experiment was carried out in a randomized complete design (RCD) in factorial experiment with four replications. Three cultivars of rice Tarom, Neda and Khazar, and six strains of Fluorescent pseudomonads GO11, GO12, GO15, GU10, MZ3 and MZ16 were used along with a control treatment. The collected data included weight of fresh shoot, weight of dry shoot and phosphorus uptake by plant at flowering stage, and yield of grain, 1000 seed weight, number of panicles, number of spikelets, number of grains per panicle, and phosphorus uptake in grain at maturity. Results of the experiment showed that all the parameters according to Duncan test (P ≤ 0.05) were significantly affected in different cultivars. Maximum grain yield was obtained from Neda cultivar. Inoculation with strains increased all plant biometrical parameters, growth indices and yield of rice. Maximum grain yield (30.61g per pot) was obtained with P. fluorescens GO15 strain and showed a significant increase in comparison with the control, (24.5%.). Maximum grain yield and growth indices were obtained from inoculation of seeds of Neda cultivar with P. fluorescens GO15. Maximum rates of P uptake in plant and grain of rice were obtained from interaction of P. fluorescens GO12 with Neda and Khazar cultivars, respectively. Based on the obtained results, fluorescent pseudomonads could affect yield of rice and P uptake in plant and grain.

کلیدواژه‌ها [English]

  • Phosphate solubilizing
  • Growth promoting bacteria
  • Fluorescent pseudomonads
  • Rice grain yield
  1. بنی هاشم، ف. 1388. بررسی تأثیر باکتری­های سودوموناسه با توانایی تولید اکسین بر خصوصیات فیزیولوژیکی گیاه برنج رقم ندا (Oryza sativa). پایان نامه کارشناسی ارشد فیزیولوژی گیاهی. دانشگاه آزاد اسلامی – واحد گرگان. 141 صفحه.
  2. بی نام. آمار نامه کشاورزی، جلد اول: محصولات زراعی و باغی (86- 1385). نشریه شماره 09/88 دفتر آمار و فن آوری اطلاعات معاونت برنامه­ریزی و اقتصاد وزارت جهاد کشاورزی، تهران.
  3. پیردشتی، ه. 1377 . بررسی تاریخ کاشت بر نقل و انتقال مجدد نیتروژن و شاخص­های رشد، عملکرد و اجزای عملکرد ارقام مختلف برنج. پایان نامه کارشناسی ارشد زراعت. دانشگاه تربیت مدرس. دانشکده کشاورزی. 158 صفحه.
  4. جعفرزاده، ح. 1388. بررسی بررسی تأثیر ایزوله های سودوموناس بر جذب عناصر غذایی و عملکرد برنج در شرایط گلخانه­ای. پایان نامه کارشناسی ارشد خاکشناسی. دانشگاه آزاد اسلامی – واحد کرج. 116 صفحه.
  5. حاتمی، ح. 1381. بررسی تأثیر تاریخ کاشت، فاصله کاشت و کود ازته بر شاخص­های رشد، عملکرد و اجزای عملکرد ارقام مختلف برنج. پایان­نامه کارشناسی ارشد زراعت. دانشگاه آزاد اسلامی – واحد کرج. 104 صفحه.
  6. رجب زاده، ز. 1388. بررسی تأثیر باکتری­های سودوموناسه با توانایی تولید سیدروفور بر خصوصیات فیزیولوژیکی گیاه برنج رقم خزر (Oryza sativa L.). پایان نامه کارشناسی ارشد فیزیولوژی گیاهی. دانشگاه آزاد اسلامی – واحد گرگان. 154 صفحه.
  7. عباس زاده، م. 1388. بررسی تأثیر باکتری­های سودوموناسه با توانایی حلالیت فسفات بر خصوصیات فیزیولوژیکی گیاه برنج رقم طارم (Oryza sativa L.). پایان نامه کارشناسی ارشد فیزیولوژی گیاهی. دانشگاه آزاد اسلامی – واحد گرگان. 166 صفحه.
  8. عرفانی، ع.، و م. نصیری. 1379. بررسی بعضی از خصوصیات مرفولوژیکی و فیزیولوژیکی مؤثر بر عملکرد ارقام برنج. انتشارات مؤسسه تحقیقات برنج کشور – معاونت مازندران. 43 صفحه.
  9. Abel, S., C.A. Ticconi., C.A. Delatorre. 2002. Phosphate sensing in higher plants. Physiologia Plantarum. 115: 1-8.
  10. Afzal, A., A, Bano. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphate uptake in wheat (Triticum aestivum). Int J Agric boil. 10:85–88
  11. Afzal, A., M. Ashraf., S.A. Asad., and M. Farooq. 2005. Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum) in rainfed area. Int. J. Agric. Biol. 7: 207–209.
  12. Alagawadi, A.R., A.C. Gaur. 1992. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor ) Moench in dry land. Trop Agric. 69:347–350.
  13. Alikhani, H.A., N. Saleh-Rastin., and H. Antoun. 2006. Phosphate solubilization of Rhizobia native to Iranian Soils. Plant Soil. 287: 35-41.
  14. Ashrafuzzaman, M., H. Farid Akhtar., M. Razi Ismail., M.D. Anamul Hoque., M. Zahurul , S.M. Shahidullah., and M. Sariah. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth, African Journal of Biotechnology. 8 (7): 1247-1252.
  15. Belimov, A.A., P.A. Kojemiakov., and C.V. Chuvarliyeva. 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil Journal. 17: 29–37.
  16. Biswas, J. C., J.K. , F.B. Dazzo., Y.G. Yanni., B.G. Rolfe. 2000b. Rhizobial inoculation influences seedling vigor and yield of rice.  Agron. J. 92: 880–886.
  17. Biswas, J.C., J.K. Ladha and F.B. Dazzo, 2000a. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. America J., l 64: 1644–50.
  18. Biswas, J.C., Ladha, J.K., Dazzo, F.B., Yanni, Y.G., and Rolfe, B.G. 2000b. Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J. 92: 880-886.
  19. Bricker, B.A. 1991. Micro Computer Programme for the Design, Manage and Analysis of Agronomic Research Expt. Crop and Science Department, AUS, Lansin USA.
  20. Chapman, H.D., Pratt, P. F. 1961. Methods of analysis for soil, plant and waters. University of California. Division of Agricultural Sciences.
  21. Chen, Y.P., P.D. Rekha., A.B. Arunshen., W.A. Lai., and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34:33-41.
  22. Chuang, C.Y., C. Kuo., and W. Chao. 2006. Solubilisation of inorganic phosphates and plant growth promotion by Aspergillus niger. Biologi Fertili Soils. 43 (5): 579 -584.
  23. Collavino, M.M., P.A. Sansberro., L.A. Mroginski., and O. Mario Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils. 46:727–738
  24. Dey, K.B., 1988. Phosphate solubilizing organisms in improving fertility status Biofertilizers, potentialities and problems. P. 237- 248.In. Sen et al. (ed). Plant physiology Forum. 
  25. Dubey, S.K. 1998. Response of soybean (Glycine max) to biofertilizers with and without nitrogen, phosphorus and potas­sium on swell-shrink soil. Indian J. Agron. 43: 546–549.
  26. Duncan, D.B. 1955. Multiple ranges a. multiple F- test. 11: 1-42.
  27. Fallah, A. 2006. Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from north of Iran. 18th World Congress of Soil Science, July 9-15, 2006, Philadelphia, Pennsylvania, USA.
  28. Ghaderi, A., N. Aliasgharzad., S. Oustan., and P.A. Olsson. 2008. Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil Environ. 27:71-76.
  29. Gulati, A., P. Rahi., and P. Vyas. 2007. Characterization of phosphate solubilizing florescent Pseudomonas from the rhizosphere of sea buckthorn growing in the cold desert of Himalayas. Curr. Microbiol. 56: 73–79.
  30. Haile, W., Fassil, A. and Asfaw, H. 1999. Studies on Phosphate Solubilizing Ability of Bacteria Isolated from Some Ethiopia Soils. of the 9th Annual Conference of the Biological Society of Ethiopia, Awassa, Ethiopia, PP. 31.
  31. Henri, F., N. N. Laurette., D. Annette., Q. John., M. Wolfgang., E. Francois-Xavier., and N. Dieudonne. 2008. Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African J. Microbiol. Res. 2:171-178.
  32. Hilali, A., D. Przvost., W.J. Broughton., H. Antoun. 2000. Potential use of Rhizobium leguminosarum bv. trifolii as plant growth promoting rhizobacteria with wheat. Abstract, 17th North American Conference on Symbiotic Nitrogen Fixation, Laval University,Quebec, Canada.
  33. Jakson, M. L. 1967. Soil chemical analysis, Prentice – Hall of India private Limited, New Delhi.
  34. Jilani, G., A. Akram., R.M. Ali., F.Y. Hafeez., I.H. Shamsi., A.N. Chaudhry., and A.G. Chaudhry. 2007. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann. Microbiol. 57:177-183.
  35. Kang, S.C., C.G. Hat., T.G. Lee., and D.K. Maheshwari. 2002. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr. Sci. 82:439- 442.
  36. Keneni, A., F. Assefa., and P.C. Prabu. 2010. Isolation of Phosphate Solubilizing Bacteria from the. Rhizosphere of Faba Bean of Ethiopia and Their Abilities on Solubilizing Insoluble Phosphates. J. Agr. Sci. Tech. 12: 79-89.
  37. Khalid, A., M. Arshad., Z.A. Zahir., and A. Khaliq. Potential of plant growth promoting rhizobacteria for enhancing wheat yield.  J. Anim. PlantSci. 7: 53–56.
  38. Khan, K.S., and R.G. Joergensen. 2009. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour, Technol. 100:303-309.
  39. Khan, M.S., A. Zaidi., and P.A. Wani. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture - A review. Agron. Sustain. Dev. 27:29-43.
  40. Krasilinikov, N.A. 1957. On the role of soil micro-organism in plant nutrition. Microbiologiya. 26:659-72.
  41. Kucey, R.M.N., 1987. Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 53: 2699–703
  42. Kucey, R.M.N., H.H. Janzen., and M.E. Legget. 1989. Microbial mediated increases in plant available phosphorus. Adv. Agron. 42:199 - 228.
  43. Kudashev, I.S. 1956. The effect of phosphobacterin on the yield and protein content in grains of Autumm wheat, maize and soybean. Doki. Akad. Skh. Nauk. 8:20-23.
  44. Kundu, B.S., and A.C. Gaur. 1984. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant and Soil Journal. 79: 227–34.
  45. Mehana, T.A., and O.A. Wahid. 2002. Associative effect of phosphate dissolving fungi, Rhizobium and phosphate fertilizer on some soil properties, yield components and the phosphorus and nitrogen concentration and uptake by Vicia faba L. under field conditions. Pakistan J. Biol. Sci. 5: 1226–31
  46. Pal, S.S. 1998. Interaction of an acid tolerant strain of phos­phate solubilizing bacteria with a few acid tolerant crops. Plant and Soil. 198: 169–177.
  47. Ponmurugan, P., and C. Gopi. 2006. Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J. Agron. 5:600-604.
  48. Pradhan, N., and L.B. Sukla. 2005. Solubilization of inorganic phosphate by fungi isolated from agriculture soil. African J. Biotechnol. 5:850-854.
  49. Raghothama, K.G. 1999. Phosphate acquisition. Ann. Rev. of Plant Physiol. 50: 665-693.
  50. Ramezanpour, M. 2009. Identification of phosphate solubilizing Pseudomonas sp. of rice rhizosphere based on 16S rDNA genotyping. Middele – East J. Sci. Res., 4 (4): 348-353.
  51. Ramezanpour, M., Popov, Y., Khavazi, K., Asadi Rahmani, H. 2011. Molecular genosystematic and hysiological characteristics of fluorescent pseudomonads isolated from the rice rhizosphere of Iranian paddy fields. African J. Agr Res. 6(1), pp. 145-151.
  52. Ramezanpour, M., Popov,Y., Khavazi, K., and Asadi Rahmani, H. 2010. Genetic Diversity and Efficiency of Indole Acetic Acid Production by the Isolates of Fluorescent Pseudomonads from Rhizosphere of Rice (Oryza sativa L.). American-Eurasian J. Agric. & Environ. Sci. 7 (1): 103-109.
  53. Ramezanpour, M.R., Popov, Y., Khavazi, K. 2008. Isolation and characterization of fluorescent pseudomonads species of paddy fields in the North of Iran. Biol. J. Armenia. 1: 141-146.
  54. Rashid, , S. Khalil., N. Ayub., S. Alam., and F. Latif. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci. 7:187–196
  55. Rausch, C., M. Bucher. 2002. Molecular mechanisms of phosphate transport in plants. Planta.  216: 23-37.
  56. Richardson, A.E. 2001. Prospect for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol. 28: 897-906.
  57. Richardson, A.E., P.A. Hadobas., J.E. Hayes., C.P. O’Hara., R.J. Simpson. 2001. Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant and Soil. 229: 47–56.
  58. Rodriguez, H., and R. Fraga, 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv., 17: 319–339.
  59. Rodriguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.
  60. Rodriguez, H., R. Fraga., T. Gonzalez., Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and    287: 15-21.
  61. Sarawgi, S.K., P.K. Tiwari., R.S. Tripathi. 1999. Uptake and balance sheet of nitrogen and phosphorus in gram (Cicer ariet­inum) as influenced by phosphorus, biofertilizers and micronu­trients under rainfed condition. Indian J. Agron. 44: 768–772.
  62. Selvaraj, P., M. Madhaiyan., and T. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777
  63. Son, T.T.N., C.N. Diep., and T.T.M. Giang. 2006. Effect of bradyrhizobia and phosphate solubilizing bacteria application on Soybean in rotational system in the Mekong delta. Omonrice. 14:48-57.
  64. Subba Rao, N.S. 1982. Advances in Agricultural Microbiology . in: Subba Rao, N.S. (ed.), Oxford and IBH Publ. Co.
  65. Sundara, B., V. Natarajan., and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Res. 77:43-49.
  66. Sundram, K. P. 1994. Fertilizers News, Fertilizer Association of India. New Delhi.
  67. Tao, G., S. Tian., M. Cai., and G. Xie. 2008. Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere. 18:515-523.
  68. Tomar, R.K.S., K.N. Namdeo., J.S. Ranghu. 1996. Efficacy of phosphate solubilizing bacteria biofertilizers with phosphorus on growth and yield of gram (Cicer arietinum). Indian J. Agron. 41: 412–415.
  69. Vance, C.P., C. Uhde-Stone., D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist. 157: 423-447.
  70. Verma, L.N. 1993. Biofertiliser in agriculture. p. 152-183.In: P.K. Thampan (ed.). Organics in soil health and crop production. Peekay Tree Crops Development Foundation, Cochin, India.
  71. Verma, S.C., Ladha, J.K., Tripathi, A.K. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91: 127-141.
  72. Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi Adv. Agron. 69:99-151.
  73. Yamamoto, Y., T. Yoshida., T. Enomoto., and G. Yoshikawa. 1991. Characteristics for the efficiency of spikelet production and the ripening in high-yielding japonica-indica hybrids and semi-dwarf indica rice varieties. Jpn. J. Crop Sci. 60: 365-372.
  74. Yanni, Y.G., Rizk, R.Y., Corich, V., Squartini, A., Ninke, K., Philip-Hollingsworth, S., Orgambide, G., de Bruijn, F., Stoltzfus, J., Buckley, D., Schmidt, T.M., Mateos, P.F., Ladha, J.K., Dazzo, F.B. 1997. Natural endophytic association between Rhizobium leguminosarum trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil. 194: 99-114.
  75. Yazdani M., M.A. Bahmanyar., H. Pirdashti., and M.A. Esmaili. 2009. Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc. World Acad. Science, Eng. Technol. 37:90-92.
  76. Zaidi, A., and M.S. Khan. 2006. Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatumon on green gram - Bradyrhizobium Turk. J. Agric. 30:223-230.
  77. Zaidi, A., M.S. Khan., and M. Aamil. 2004. Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of greengram. J. Plant Nut. 27: 601–612.