دینامیک کربن در خاک شنی آلوده به نفت خام در حضور اشکال مختلف نیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد بیولوژی و بیوتکنولوژی خاک- دانشکده کشاورزی، دانشگاه شهرکرد

2 دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد

3 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

هدف این تحقیق بررسی اثر مصرف همزمان نفت خام و شکل­های نیتروژن بر دینامیک کربن و تعیین تأثیر ویژگی­های خاک شنی بر روند آن بود. آزمایش به صورت فاکتوریل (4×3) و در قالب طرح پایه کاملاً تصادفی در سه تکرار و در شرایط آزمایشگاهی طی 126 روز انجام شد. برای این منظور، ابتدا نمونه­های خاک شنی توسط سطوح صفر، 5 و 10 درصد نفت خام آلوده شده و سپس از نمک­های نیتروژن­دار نیترات پتاسیم، کلرید آمونیوم و مخلوطی از این دو نمک استفاده گردید. نمونه­ها تا پایان آزمایش در دمای 1±25 درجه سلسیوس در داخل انکوباتور نگهداری شدند. سپس هر هفت روز یکبار نمونه­های خاک به منظور انجام آزمایش تنفس میکروبی مورد استفاده قرار گرفتند. نتایج نشان داد افزودن نیتروژن به خاک شنی سبب تحریک جوامع میکروبی خاک می­شود. افزودن همزمان نفت خام و نیتروژن به خاک، اثرات تحریک کنندگی زیادی بر معدنی شدن کربن خاک داشت به طوری که تیمار NH4 و سطح ٪10 نفت خام بیشترین میزان معدنی شدن کربن را به خود اختصاص دادند. به طور خلاصه، نفت خام پس از اضافه شدن به خاک با جامعه خاکزیان اثرات متقابل مثبت و منفی برقرار می­کند. با این حال، کاربرد نیتروژن در شکل مناسب در خاک­های آلوده به نفت خام ممکن است سبب کاهش اثرات مضر ترکیبات هیدروکربنی بر جامعه ریزجانداران خاک گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Carbon Dynamics in a Crude Oil Polluted Sandy Soil in the Presence of Various N Forms

نویسندگان [English]

  • S. Namazi 1
  • Fayez Raiesi 2
  • S. Ghorbani Dashtaki 3
1 Former graduate student of soil biology and biotechnology, Faculty of Agriculture, University of Shahrekord
2 Associate Professor of Department of Soil Science, Faculty of Agriculture, University of Shahrekord
3 Assistant Professor of Department of Soil Science, Faculty of Agriculture, University of Shahrekord
چکیده [English]

The objective of the present study was to investigate the influences of crude oil and various N forms application on C dynamic in a sandy soil. The experiment was conducted as factorial (3×4) arranged in a completely randomized design with three replicates under laboratory conditions during 126 days. Sandy soil samples were first contaminated with 5% and 10% crude oil levels and, then, N salts of KNO3, NH4Cl, and a mixture of them were added. Soil samples were placed at 25±1°C in incubator for 126 days to determine microbial respiration at weekly intervals. Results indicated that N addition to sandy soil would cause soil microbial communities stimulation. The addition of crude oil and N simultaneously, caused the 10% oil level and NH4-treated soils to show the maximum C mineralization. In short, crude oil has positive and negative interactions with soil microorganisms. However, application of N fertilizes in proper form to petroleum-polluted environments may cause the reduction of harmful effects of toxic hydrocarbon compositions on soil microbial communities. 

کلیدواژه‌ها [English]

  • Soil pollution
  • Microbial respiration
  • N form
  • Soil microbial activity
  • Crude oil
  1. جعفری س. 1387. اثرات متقابل بقایای گیاهی و گوگرد بر فعالیت میکروبی و آنزیمی یک خاک آهکی. پایان نامه کارشناسی ارشد مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهرکرد.
  2. جعفری حقیقی م. 1382. روش­های تجزیه خاک، نمونه­برداری و تجزیه­های مهم فیزیکی و شیمیایی با تأکید بر اصول تئوری و کاربردی. انتشارات ندای ضحی.
  3. غازان­شاهی ج. 1376. آنالیز خاک و گیاه. انتشارات مترجم.
  4. لکزیان ا. 1387. میکروبیولوژی خاک. انتشارات دانشگاه فردوسی مشهد.
  5. نمازی س، 1389. اثرات متقابل نفت خام و شکل­های مختلف نیتروژن بر تنفس و بیوماس میکروبی و فعالیت آنزیمی خاک­های رسی و شنی. پایان نامه کارشناسی ارشد مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهرکرد.
  6. Ajwa, H.A., and M.A. Tabatabaie. 1994. Decomposition of different organic materials in soils. Biol. Fertil. Soils 18:175-182.
  7. Alexander, M. 1977. Introduction to soil microbiology. (2st). Kriege Publishing Co.Wiley, New York. 480 pp.
  8. Anderson, J.P.E. 1982. Soil respiration. p. 831-871. In A.L. Page et al. (eds) Methods of soil analysis. Part 2. chemical and microbiological properties. Agron. Monogr. ASA and SSSA, Madison, WI.
  9. Broadbent, F.E., and A.G. Norman. 1947. Some factors affecting the availability of organic nitrogen in soil-a preliminary report. Am. Soil. Sci. Soc J. 11: 264-267.
  10. Chaineau, C.H., G. Rougeux., C. Yepremian., and J. Oudot. 2005. Effects of nutrient concentration on biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem. 37:1490-1497.
  11. Chen, J., and J.M. Stark. 2000. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol. Biochem. 32: 47-57.
  12. Fogg, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433-462.
  13. Franco, , M. Contin., G. Bragato., and M. De Nobili. 2004. Microbiological resilience of soils contaminated with crude oil. Geoderma 121:17-30.
  14. Gee, G.W., and J.W. Bauder. 1986. Particle size analysis. p. 383-411. In A. Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. Agron. Madison, WI.
  15. Geisseler, D., and W.R. Horwath. 2008. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol. Biochem. 40:3040-3048.
  16. Giblin, A.E., K.J. Nadelhoffer., G.R. Shaver., J.A. Laundre., and A.J. McKerrow. 1991. Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecological Monographs 61: 415-435.
  17. Hart, S.C., G.E. Nason., D.D. Myrold., and D.A. Perry. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecol. 75: 880-891.
  18. Hassink, J. 1995. Organic matter dynamics and N mineralization in grassland soils. PhD thesis. Wageningen Agricultural University, The Netherlands. 250 pp.
  19. Jackson, L.E., J.P. Schimel., and M.K. Firestone. 1989. Short-term partitioning of nitrate and ammonium between plants and microbial biomass in annual grassland. Soil Biol. Biochem. 21: 409-415.
  20. Jackson, W.A., and J.H. Pardue. 1999. Potential for enhancement of biodegradation of crude oil in Louisiana salt marshes using nutrient amendments. Water Air Soil Pollut. 109:343-355.
  21. Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil: measurement and turnover. In: Paul E.A. and Ladd J.N. (Eds). Soil Biochem, vol. 5, Dekker, New York. pp. 415-471.
  22. Jenkinson, D.S., and D.S. Powelson. 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8: 209-213.
  23. Klute, A. 1986. Methods of Soil Analysis part 1, Physical and Mineralogical. Am. Agron. Soc-Am Soil Sci. pp. 413-423.
  24. Labud, V., C. Garcia., and T. Hernandez. 2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66:1863-1871.
  25. Margesin, R., M. Hammerle., and D. Tscherko. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol 53:259-269.
  26. Martens, R. 1995. Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biol. Fertil. Soils 19: 87-99.
  27. Matus, F.J. 1994. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures. PhD thesis. Wageningen Agricultural University, The Netherlands. 141 pp.
  28. McGill, W.B., and M. Nyborg. 1975. Reclamation of wet forested soils subjected to oil spills. Contract OSP3-0073 for Northern forest research center, Edmonton, Alberta Institute of Pedology. University of Alberta, Edmonton, Canada. Publication No. 6-75-1.
  29. Minai-Tehrani, D., and A. Herfatmanesh. 2007. Biodegradation of aliphatic and aromatic fractions of heavy crude oil-contaminated soil: A pilot study. Biorem. J. 11:71-76.
  30. Moscatteli, C., A.Di. Tizio., S. Marinari., and S. Grego. 2007. Microbial indicators related to soil carbon in Mediterranean land use systems. Soil. Till. Res 97:51-59.
  31. Ndiaye, E.L., J.M. Sandeno., D. McGrath., and R.P. Dick. 2000. Integrative biological indicators for detecting change in soil quality. Am J Alternative Agr 15:20-36.
  32. Okoh, A.I. 2006. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biol. Rev 1:38-50.
  33. Paul, E.A., and F.E. Clark. 1996. Soil microb. biochem. 2nd ed. Academic. New York. 340 pp.
  34. Pitter, P., and J. Chudoba. 1990. Biodegradability of organic substances in the aquatic environment. CRC Press. Boca Raton. Florida. USA. p.7-83.
  35. Polglase, P.J., P.M. Attiwill., and M.A. Adams. 1992. Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans. Plant and Soil 142:167-176.
  36. Rahman, K.S.M., J.Thahira-Rahman., P.Lakshmanaperumalsamy., and I.M. Banat. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioremed. Technol 85:257-261.
  37. Raiesi, F. 2004. Soil properties and N application effects on microbial activities in two winter wheat cropping systems. Biol. Fertil. Soils 40:88-92.
  38. Rivera-Espinoza, Y., and L. Dendooven. 2004. Dynamics of carbon, nitrogen and hydrocarbons in diesel-contaminated soil amended with biosolids and maize. Chemosphere 54:379-386.
  39. Schimel, J.P., and M.K. Firestone. 1989. Inorganic nitrogen incorporation by coniferous forest floor material. Soil Biol. Biochem. 21: 41-46.
  40. Schimel, J.P. and M.N. Weintraub. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35: 549-563.
  41. Singh, A., R.C. Kuhad., and O.P. Ward. 2009. Advances in Applied Bioremediation. Soil Biol. Volume 17. p. 365.
  42. Skjemstad, J.O., and J.A. Baldock. 2008. Total and organic carbon. p. 225-238 In M.R. Carter et al. (ed.) Soil Sampling and Methods of Analysis. 2nd ed. Soil Sci. Soc. CRC Press (Taylor and Francis Group).
  43. Skujins, J., and S.O. McDonald. 1985. Waste oil biodegradation and changes in microbial populations in a semiarid soil. p. 549. In D.E. Caldwell et al. (eds.) Planetary Ecology, Van Nostrand Reinhold Co., New York.
  44. Stanford G. and Smith S.J. 1972. Nitrogen mineralization potential of soils. Am. Soil Sci. Soc J. 36: 456-472
  45. Thouand, G., P. Bauda., J. Oudot., G. Kirsch., C. Sutton., and J.F. Vidalie. 1999. Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106-115.
  46. Vance, E.D., and F.S. III. Chapin. 2001. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 33:173-188.
  47. Van Vuuren, M.M.I., and L.J. Van der Eerden. 1992. Effects of three rates of atmospheric nitrogen deposition enriched with 15N on litter decomposition in a peatland. Soil Biol. Biochem 24:527-532.
  48. Waksman, A., and K.R. Stevens. 1929. Contribution to the chemical composition of peat: V. The role of microorganisms in peat formation and decomposition. Soil Sci. 28: 315-340.