آنالیز کمی جذب سطحی آهن (II) بر روی هیدروکسید آهن ,گئوتایت،(α-FeOOH)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه خاکشناسی دانشگاه تربیت مدرس

2 استادیار گروه خاکشناسی دانشگاه تربیت مدرس

3 استاد دانشگاه تربیت مدرس تهران

چکیده

آهن (Fe) از عناصر ضروری برای رشد گیاهان، حیوانات و انسان است. شیمی آهن در سیستم­های طبیعی نظیر خاک­ها، و به ویژه در محیط­های بی­هوازی نظیر خاک­های غرقابی و شالیزارها، تأثیر زیادی در قابلیت استفاده و تغییر شکل تعداد زیادی از دیگر عناصر و در نتیجه نقش مهمی در چرخه­های طبیعی بیوشیمیائی و ژئوشیمیائی دارد. تحرک و قابلیت استفاده آهن در محیط­های طبیعی، بوسیله واکنش­های جذب سطحی – رها سازی و انحلال - رسوب کنترل می­شود. میزان تغییر در این واکنش­ها تابعی از شرایط محیطی، به ویژه سطح فعالیت پروتون (pH) و الکترون (pe) است. با توجه به اهمیت فرآیند جذب سطحی در کنترل غلظت آهن در فاز محلول، در این تحقیق فرآیند جذب سطحی آهن (II) روی هیدروکسید آهن گئوتایت در دامنه­ای از pH و قدرت یونی بررسی گردید. رفتار باری گئوتایت، از تحلیل داده­های تیتراسیون اسید و باز در قدرت­های یونی مختلف تعیین شد. داده­های آزمایشی نقطه صفر بار الکتریکی کانی را در pH 1/9 نشان داد. هم­دماهای جذب سطحی آهن (II) بوسیله مدل مکانیستیکی CD-MUSIC آنالیز گردیدند. این داده­ها با در نظر گرفتن دو کمپلکس درون­کره­ای سطحی  و  به درستی توصیف گردیدند. محاسبه ضرایب توزیع بار (CD) نشان داد که در اثر جذب گونه­های سطحی آهن (II) در حدود 64/0 واحد بار به سطح کانی منتقل می­شود. در اثر این فرآیند 36/0 واحد بار نیز به لایه اشترن افزوده می­شود. مقدار کل جذب سطحی آهن (II) با افزایش pH و در نتیجه کاهش پتانسیل الکتریکی سطح کانی افزایش یافت. محاسبه جزء مولی گونه­های جذب سطحی شده آهن (II) نشان داد که کمپلکس  گونه اصلی آهن (II) جذب سطحی شده در دامنه pH آزمایشی
می­باشد. علاوه بر این، داده­های آزمایشی و پیش بینی مدل نشان داد که قدرت یونی اثر قابل توجهی بر جذب سطحی آهن (II) ندارد که احتمالاّ ناشی از نوع مکانیسم جذب سطحی آهن است. استخراج تقریباّ کامل آهن (II) جذب سطحی شده عدم رسوب آن در طی آزمایش را نشان داد. ضرایب ترمودینامیکی حاصل را می­توان در مدل سازی بر­هم­کنش یون­ها در خاک­های شالیزاری که در آنها کاهش پتانسیل رداکس موجب افزایش فعالیت آهن (II) می­گردد را استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative Analysis of Fe(II) Adsorption on Iron Hydroxide ‘Goethite’ (α-FeOOH)

نویسندگان [English]

  • M. H. Davodi 1
  • R. Rahnemaie 2
  • Mohammad Jafar Malakouti 3
1 PhD. student
2 Assistant Professor, Soil Science Department, Tarbiat Modares University
3 Professor of Tarbiat Modares University
چکیده [English]

Iron (Fe) is an essential element for plants, animals, and human. The chemistry of iron in natural systems like soils, particularly in the anaerobic and flooded paddy soils, strongly influences the bioavailability and transformation of various elements and, therefore, plays an important role in bio- and geo-chemical cycles. Mobility and availability of iron in the natural systems is controlled by the adsorption-desorption and dissolution-precipitation reactions. These reactions are strongly affected by environmental conditions especially proton (pH) and electron (pe) activities. Considering the importance of the adsorption process in controlling equilibrium concentration of Fe(II), we investigated Fe(II) adsorption process on goethite over a wide range of pH and ionic strength. The goethite charging behavior was calculated from acid-base titration at different levels of ionic strength. Titration data revealed pHpzc=9.1 for the goethite. The Fe(II) adsorption isotherms data were analyzed with the CD-MUSIC surface complexation model. Adsorption data were successfully described using two inner-sphere surface complexes, i.e. and . The calculated CD values indicated some charge transfer to the surface plane. Total Fe(II) adsorption was increased with increasing pH in response to drop in the surface potential. Mole fraction calculation showed that  was the dominant surface species in the studied pH range. Furthermore, experimental data and model calculations revealed that ionic strength had no considerable effect on Fe(II) adsorption, possibly due to the type of adsorption mechanism. Almost full recovery of the adsorbed Fe(II) rejected possible precipitation of Fe(II), i.e. the dominance of adsorption process.

کلیدواژه‌ها [English]

  • Adsorption
  • Fe(II)
  • Goethite
  • CD-MUSIC Model
  • Charging behavior
  1. Appelo, C. A. J., M. J. J. Van Derwiden, C. Tournassat and L. Charlet. 2002. Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic. Environmental Science & Technology. 36: 3096-3103.
  2. Atkinson, R. J., A. M. Posner and J. P. Quirk. 1966. Adsorption of Potential-Determining Ions at the Ferric Oxide-Aqueous Electrolyte Interface. The Journal of Physical Chemistry. 550-558.
  3. Ballesteros, M. C., E. H. Rueda and M. A. Blesa. 1998. The Influence of Iron ( II ) and (III) on the Kinetics of Goethite Dissolution by EDTA. Journal of Colloid and Interface Science. 201: 13-19.
  4. Bowden, J. W., A. M. Posner and J. P. Quirk. 1977. Ionic adsorption on variable charge mineral surfaces. Theoretical charge development and titration curves. Australian Journal of Soil Research 15: 121-136.
  5. Brown, I. D. and D. Altermatt. 1985. Bond-valence parameters obtained from a systematic analysis of inorganic crystal-structure database. Acta Crystallographica Section B-Structural Science. 41: 244.
  6. Buerge, I. J. and S. J. Hug. 1999. Influence of mineral surfaces on Chromium(VI) reduction by Iron(II). . Environmental Science & Technology. 33(23): 4285–4291.
  7. Byong - Hun, J., B. Dempsey and W. Burgos. 2003. Kinetics and Mechanisms for Reactions of Fe(II) with Iron(III) Oxides. Environmental Science & Technology. 37: 3309-3315.
  8. Charlet, L., A. C. Scheinost, C. Tournassat, J. M. Greneche, A. Gehin, A. Fernandez-Martınez, S. Coudert, D. Tisserand and J. Brendle. 2007. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica et Cosmochimica Acta. 71: 5731-5749.
  9. Charlet L., B. D. and P. T. 2002. Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology. 190(1-4): 303–319.
  10. Charlet L., Silvester E. and L. E. 1998. N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): The surface =FeIIIOFeIIOH0 species, as major reductant. Chemical Geology.151: 81-88.
  11. Cooper, D. C., F. Picardal, J. Rivera and C. Talbot. 2000. Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200. Environmental Science & Technology. 34: 100-106.
  12. Coughlin, B. R. and A. T. Stone. 1995. Nonreversible Adsorption of Divalent Metal-Ions (Mn-Ii, Co-Ii Ni-Ii Cu-Ii and Pb-Ii) onto Goethite - Effects of Acidification, Fe-Ii Addition, and Picolinic-Acid Addition. Environmental Science & Technology. 29(9): 2445-2455.
  13. Davis, J. A. and J. O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double properties in simple electrolytes. Journal of Colloid and Interface Science. 63: 480.
  14. Dixit, S. and J. G. Hering. 2006. Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems. Chemical Geology. 228: 6-15.
  15. Handler, R. M., B. L. Beard, C. Johnson and M. Scherer. 2009. Atom Exchange between Aqueous Fe(II) and Goethite: An Fe Isotope Tracer Study. Environmental Science & Technology. 43: 1102–1107.
  16. Hansel, C. M., S. G. Benner, J. Neiss, A. Dohnalkova, R. K. Kukkadapu and S. Fendorf. 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow Geochim. Cosmochim. Acta 67: 2977–2992.
  17. Hazemann, J. L., J. F. Berar and A. Manceau. 1991. Rietveld studies of the aluminium-iron substitution in synthetic goethite. Material Science Forum. 79: 821.
  18. Hiemstra, T. and W. H. Van Riemsdijk. 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. Journal of Colloid and Interface Science. 179(2): 488-508.
  19. Hiemstra, T. and W. H. van Riemsdijk. 2006. Biogeochemical speciation of Fe in ocean water. Marine Chemistry. 102: 181-197.
  20. Hiemstra, T. and W. H. van Riemsdijk. 2007. Adsorption and surface oxidation of Fe(II) on metal (hydr)oxides. Geochimica et Cosmochimica Acta. 71: 5913-5933.
  21. Hiemstra, T., W. H. van Riemsdijk and G. H. Bolt. 1989. Multisite proton adsorption modeling at the solid /solution interface of (hydr)oxides: A new approach I. Model description and evaluation of intrinsic reaction constants J.Colloid Interface Sci. 133: 91.
  22. Hohl, H. and W. Stumm. 1976. Interaction of Pb-2+ with Hydrous Gamma-Al-2O-3. Journal of Colloid and Interface Science. 55(2): 281-288.
  23. Jang, J.-H., B. A. Dempsey and W. D. Burgos. 2008. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: Effects of solid transformation, surface coverage, and humic acid. Water Research. 42: 2269-2277.
  24. Jeffrey, G. H., J. Bassett, J. Mendham and R. C. Denney. 1989. Vogel's Textbook of Quantitative Chemical Analysis. Wiley & Sons.
  25. Jeon, B.-H., B. A. Dempsey, W. D. Burgos and R. A. Royer. 2001. Reactions of ferrous iron with hematite. Colloids and Surfaces. 191: 41-55.
  26. Jeon, B. H., B. A. Dempsey, W. D. Burgos and R. A. Royer. 2003. Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Water Research. 37: 4135–4142.
  27. Larese - Casanova, P. and M. Scherer. 2007. Fe(II) Sorption on Hematite: New Insights Based on Spectroscopic Measurements. Environmental Science & Technology. 41: 471-477.
  28. Liger, E., L. Charlet and P. Van Cappellen. 1999. Surface catalysis of uranium(VI) reduction by iron(II). Geochimica et Cosmochimica Acta. 63: 2939-2955.
  29. Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons, Inc.
  30. Maithreepala, R. A. and R. A. Doong. 2004. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite. Environmental Science & Technology. 38(1): 260–268.
  31. Mettler, S., M. Wolthers, L. Charlet and U. Gunten. 2009. Sorption and catalytic oxidation of Fe(II) at the surface of calcite. Geochimica et Cosmochimica Acta. 73: 1826–1840.
  32. Nano, G. V. and T. J. Strathmann. 2006. Ferrous iron sorption by hydrous metal oxides. Journal of Colloid and Interface Science. 297: 443-454.
  33. Ottley, C. J., W. Davison and W. M. Edmunds. 1997. Chemical catalysis of nitrate reduction by iron(II) Cosmochim. Acta. 61: 1819–1828.
  34. Rahnemaie, R., T. Hiemstra and W. H. van Riemsdijk. 2006. Inner- and outer-sphere complexation of ions at the goethite-solution interface. Journal of Colloid and Interface Science. 297(2): 379-388.
  35. Rahnemaie, R., T. Hiemstra and W. H. van Riemsdijk. 2006. A new surface structural approach to ion adsorption: Tracing the location of electrolyte ions. Journal of Colloid and Interface Science. 293(2): 312-321.
  36. Rahnemaie, R., T. Hiemstra and W. H. van Riemsdijk. 2007. Geometry, charge distribution and surface speciation of phosphate on goethite. Langmuir. 23: 3680.
  37. Royer, R. A., W. D. Burgos, A. S. Fisher, B.-H. Jeon, R. F. Unz and B. A. Dempsey. 2002. Enhancement of hematite bioreduction by natural organic matter 36 Environmental Science & Technology. 36: 2897–2904.
  38. Schwertmann, U. and R. M. Taylor. 1989. Iron oxides In J. B. Dixon and S. B. Weed (eds.) Minerals in soil environments. SSSA Book Ser. 1.SSSA, Madison, WI.
  39. Silvester, E., L. Charlet, C. Tournassat, A. Gehin and J.-M. Greneche. 2005. Redox potential measurements and Mössbauer spectrometry of FeII adsorbed onto FeIII (oxyhydr)oxides. Geochimica et Cosmochimica Acta. 69: 4801-4815.
  40. Strathmann, T. J. and A. T. Stone. 2003. Mineral surface catalysis of reactions between FeII and oxime carbamate pesticides. Geochimica et Cosmochimica Acta. 67(15): 2775-2791.
  41. Stumm, W. and B. Sulzberger. 1992. The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta. 56: 3233-3257.
  42. Sverjensky, D. A. 2005. Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M+L-) electrolytes. Geochimica et Cosmochimica Acta. 69(2): 225-257.
  43. Tanwar, K. S., S. C. Petitto, S. K. Ghose, P. J. Eng and T. P. Trainor. 2008. Structural study of Fe(II) adsorption on hematite. Geochimica et Cosmochimica Acta. 72: 3311-3325.
  44. WHO (2004).
  45. Williams, A. G. B. and M. M. Scherer. 2004. Spectroscopic evidence for Fe (II)–Fe(III) electron transfer at the iron oxide–water interface. Environmental Science & Technology. 38: 4782–4790.
  46. Zachara, J. M., C. E. Cowan, R. L. Schmidt and C. C. Ainsworth. 1988. Chromate adsorption by kaolinite Clays Clay Miner. 36: 317-326.
  47. Zhang, Y., L. Charletb and P. W. Schindlerb. 1992. Adsorption of protons, Fe(I1) and Al(III) on lepidobocite (y-FeOOH). Colloids and Surfaces. 63: 259-268.