اثر باکتری های حل کننده فسفات و کودهای فسفاته بر چگونگی رشد گیاه برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زراعت، پردیس ابوریحان دانشگاه تهران

2 عضو هیئت علمی موسسه تحقیقات خاک و آب

3 استادیار گروه زراعت و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران

4 کارشناس ارشد موسسه تحقیقات برنج

چکیده

ارتباط نزدیکی بین رشد گیاهان و کارکرد سیستم­های ریشه ای و اندام های­ هوایی آنها وجود دارد. از راه بررسی روابط آلومتریک موجود بین اجزای مختلف ریشه و اندام هوایی، می توان اثرات متقابل بین ریشه و اندام هوایی را مشخص و کمی کرد. برای بررسی اثرات باکتری­های حل­کننده فسفات در مقایسه با سایر کودهای فسفاته بر رابطه آلومتری ریشه و اندام هوایی گیاه برنج، آزمایشی در قالب طرح بلوک­های کامل تصادفی با سه تکرار در مزرعه ایستگاه تحقیقات برنج کشور واقع در شهرستان تنکابن اجرا شد. تیمارهای آزمایشی شامل: 1- شاهد (بدون کود فسفاته) 2- کود بیوفسفات گرانوله 3- باکتری حل­کننده فسفات 4- سنگ فسفات 5- سوپرفسفات­تریپل به میزان 150 کیلوگرم در هکتار 6- سوپرفسفات­تریپل به میزان 75 کیلوگرم در هکتار 7- باکتری حل­کننده فسفات + سنگ فسفات 8- باکتری حل کننده فسفات + سوپر فسفات­تریپل (150 کیلوگرم در هکتار) و 9- باکتری
حل­کننده فسفات + سوپر فسفات تریپل (75 کیلوگرم در هکتار) بودند. صفات مهم ریشه و اندام هوایی شامل وزن خشک ریشه، وزن خشک برگ، وزن خشک ساقه، وزن خشک کل، وزن خشک تک بوته و نسبت وزن خشک ریشه به اندام هوایی مورد ارزیابی قرار گرفتند. اثر تیمارهای مختلف کودی بر ضریب آلومتریک مورد مطالعه در سطح 5% معنی دار شد و بالاترین مقدار تجمع ماده خشک در ساقه و تجمع ماده خشک کل در تیمار ترکیبی باکتری حل کننده فسفات به همراه سنگ فسفات مشاهده گردید. در پایان رشد بیشترین مقدار ماده خشک ریشه و نسبت ریشه به ساقه مربوط به تیمار سنگ فسفات + باکتری حل کننده فسفات بود و بیشترین مقدار ماده خشک برگ از تیمار سوپرفسفات تریپل 50 درصد بدست آمد. بالاترین میزان ضریب آلومتریک در مرحله رسیدگی در تیمار ترکیبی باکتری حل کننده فسفات به همراه سنگ فسفات مشاهده گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Phosphate Solubilizing Bacteria and Phosphate Fertilizers on Rice Growth Parameters

نویسندگان [English]

  • I. Allahdadi 1
  • reza fallah 2
  • Gh. A. Akbari 3
  • A. Mohaddesi 4
  • I. Allahdadi 3
1 Assistant Professor, Agronomy Department, Abourayhan campus, Tehran University
2 Assistant Professor of Soil and Water Research Institute
3 Assistant Professor, Agronomy Department, Abourayhan campus, Tehran University
4 Researcher, Rice Research Institute of Iran, Mazandaran
چکیده [English]

There are definite relations among growth of plants and function of roots and shoots. Interactions between shoot and roots can also be characterized and quantified by allometric relationships. In order to study the effect of phosphate solubilizing bacteria and other phosphate fertilizers effects on allometeic relationship for root and shoot of rice, an experiment was conducted in randomized complete block design with three replications. The filed experiment was conducted at the Rice Research Institute located in Tonekabon- Iran. Fertilizer treatments included microbial biophosphate, phosphate solubilizing bacteria (PSB), rock phosphate (A), triple super phosphate (TSP), triple superphosphate %50 (TSP50%), triplesuper phosphate%50 + PSB and rock phosphate + PSB. Root and shoot characteristics including root dry weight (RDW), leaf dry weight (LDW), shoot dry weight (SDW), total dry weight (TDW) and rate of root/shoot were determined. Analysis of variance showed that the effect of different treatments on the allometric coefficient was significant (P<0.05). Shoot dry weight and total dry weight were the highest in A + PSB treatment. The highest rate of RDW and rate of root/shoot were obtained in A+PSB treatment while the highest LDW was observed in TSP50% treatment. Allometric coefficient was the highest in A+ PSB treatment.

کلیدواژه‌ها [English]

  • Phosphate Solubilizing Bacteria
  • Rock Phosphate
  • Allometeic
  • Superphosphate
  • Rice
  1. ایران­نژاد، ح. و ن، شهبازیان. 1381.زراعت غلات جلد دوم. انتشارات کارند.
  2. رحیمیان، ح.، کوچکی، ع و ا، زند. 1379. فتوسنتز و تولید در شرایط متغییر رشد. انتشارات سازمان پارک ها و فضای سبز شهرداری تهران، شماره 98، تهران 430 صفحه
  3. کریمی، م. و م. عزیزی. 1376. آنالیزهای رشد گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد.
  4. کوچکی، ع. و غ، سرمدنیا. 1377. فیزیولوژی گیاهان زراعی(ترجمه). انتشارات جهاد دانشگاهی مشهد
  5. میرنیا، س.خ.، م. محمدیان.1384. اختلالات عناصر غذایی و مدیریت عناصر غذایی برنج (ترجمه). انتشارات دانشگاه مازندران.
  6. Babana A.H., and H. Antoun. 2005. Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil: in press.
  7. Bashan, Y., M. Moreno and E. Troyo. 2000. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp.. Biol. Fertil. Soils 32:265-272.
  8. Castelan, M., P. Vivin and J.P. Gaudillere. 2002. Allometric relationships to estimate seasonal above ground vegetative and reproductive biomass of (Vitis vinifera). Annals of Botany. 89: 401-408.
  9. Diepenbrock, W. 2002. Yield analysis of winter oilseed rape ( Brassica napus): a review. Field Crops Res. 67:35-49.
  10. Gabrielle, B., P. Denoroy, G. Gosse, E. Justes, and M.N. Anderson. 1998. A model of leaf area development and senescence of winter oilseed rape. Field Crops res. 57:209-222.
  11. Gregory, P.J. 1988. Root growth of chickpea. Faba bean. Lentil and Pea and effcets of water and salt stresses. PP. 857-867. In : R.J.Summer field (Eds), Word Crops: Cool Season Food Legumes. Kluwer Academic Publishers.
  12. Humbert, R.P., 1968. The Growing of Sugarcane. Elsevier, Amsterdam, 779 pp.
  13. Kawashima, C. 1988. Differences among cultivars with different number of leaves on the main stem. Jap.J. Crop Sci. 52:475-483.
  14. Liedgens, M. and W. Richner. 2001. Relation between maize (Zea mays ) leaf area and root density observed with minirhizotrons. European Journal of Agronomy. 15:131-141.
  15. Machado, S. E.D. Bynum, Jr., T.1. Archer, R.J. Lascano, L.T. Wilson, J. Bordovsky, E. Segarra, K. Bronson, D.M. Nesmith, and W. Xu. 2002. Spatial and temporal variability of corn growth and grain yield: Implication for sitespecific farming. Crop Sci. 42:1564-1576.
  16. Medina, A., and A. Probanza. 2003. Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Applied Soil Ecology. 22: 15–28.
  17. Murata, Y. 1969. physiological Aspects Of Crop Yield. Madison, American Society of Agronomy.
  18. Mustafa, Y., and S.B. Canbolat. 2005. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils. Original paper.
  19. Piccini, D.F., R. Azcón. 1987. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization de Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil. 101: 45–50.
  20. Puente ME, Y. Bashan. 2004b. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6:643–650.
  21. Specht,J.E., D.J. Hume, and S.V. Kumudini. 1999. Soybean yield potential- A genetic and physiological perspective. Crop Sci. 39:1560-1570.
  22. Sundara, B., V. Natarajan and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Research. 77:43-49.
  23. Zhuouping, C. E. Nord, J. Lynch and X. Yan. 2005. Relationship between plant maturity and root traits as related to P efficiency in soybean. C.J.Li et al. (Eds), Plant nutrition for food security, human health and environmental protection. 482-483.