اثرات باقیمانده و تجمعی لجن فاضلاب بر حرکت کادمیم، روی، سرب و مس در خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد دانشگاه صنعتی اصفهان

2 استاد دانشگاه صنعتی اصفهان

3 دانشیار دانشگاه صنعتی اصفهان

چکیده

لجن فاضلاب به دلیل دارا بودن مقادیر زیادی از عناصر غذائی و مواد‌آلی و ارزانی قیمت، امروزه به‌طور وسیعی به عنوان کود ویا اصلاح‌کنندة ویژگی‌های فیزیکی خاک مورد استفاده قرار می‌گیرد. از آن جائی که لجن فاضلاب حاوی مقادیر زیادی فلزات سنگین می‌باشد، لذا کاربرد آن احتمال جذب فلزات سنگین توسط گیاهان و آلودگی آب‌های زیرزمینی و ورود به زنجیرة غذائی انسان را مطرح می‌کند. هدف از انجام این پژوهش بررسی اثر کاربرد لجن فاضلاب بر قابلیت جذب و حرکت فلزات سنگین در پروفیل خاک می‌باشد. این مطالعه در مزرعة تحقیقاتی لورک نجف آباد، با سه سطح (25، 50 و 100 تن لجن فاضلاب در هکتار) و شاهد (بدون لجن) به صورت طرح کرت‌های خرد شده با طرح پایة بلوک‌های کاملا" تصادفی اجرا شد. در سال اول (1378)، کل کرت (3*15 متر) لجن دریافت کرد، در سال دوم (1379)، هر کرت به دو قسمت (3*12 متر) و (3*3 متر) تقسیم شد و فقط به قسمت بزرگ‌تر برای بار دوم لجن اضافه شد، در سال سوم (1380)، قسمت 12 متری، به دو بخش (3*9 متر) و (3*3 متر) تقسیم شد و فقط قسمت 9 متری برای بار سوم لجن دریافت کرد و در سال چهارم (1381)، قسمت 9 متری، به دو بخش (3*6 متر) و (3*3 متر) تقسیم گردید و فقط به قسمت 6 متری برای بار چهارم لجن فاضلاب اضافه شد. این کرت‌ها در نیمة اول هر سال زراعی تحت کشت ذرت و در نیمة دوم هر سال تحت کشت گندم قرار گرفتند. نمونه‌برداری در سال 1382 از وسط هر قسمت 3 متری مربوط به یک سال مشخص کوددهی، تا عمق 100 سانتی‌متری( به فواصل 20 سانتی‌متر)، در پایان فصل رشد گندم صورت گرفت. نمونه‌های خاک به آزمایشگاه منتقل شده و pH، ظرفیت تبادل کاتیونی، درصد کربن آلی، آهک ،سولفات، کلرید، بیکربنات، نیترات، کادمیم، روی، سرب و مس قابل استخراج با DTPA اندازه‌گیری شدند. فلزات سنگین در این خاک آبشوئی شده و به عمق های پائین تر انتقال یافته‌اند. به‌طوری که در تیمار (100)4 تن لجن در هکتار، میانگین غلظت کادمیم، بیش از 12 برابر شاهد، میانگین غلظت روی 5/34 برابر شاهد، میانگین غلظت سرب، 7/3 برابر تیمار شاهد و میانگین غلظت مس قابل جذب 3/42 برابر تیمار شاهد می‌باشد. در مورد کادمیم و روی همبستگی بالائی بین غلظت قابل جذب وکلرید و کربن آلی دیده شد و می‌توان تشکیل کمپلکس با کلرید و یا مواد‌آلی را عامل اصلی افزایش تحرک و قابلیت‌جذب آن‌ها معرفی کرد. در مورد سرب و مس، غلظت قابل‌جذب آن‌ها همبستگی بالائی با درصد کربن آلی داشت به‌طوری که می‌توان عامل اصلی افزایش تحرک و قابلیت‌جذب آن‌ها را تشکیل کمپلکس‌های محلول با مواد‌آلی معرفی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sewage Sludge on Accumulation and Transport of Cd, Zn, Cu and Pb

نویسندگان [English]

  • Mojgan yeganeh 1
  • M. Afyuni 2
  • Y. Rezainejad 3
1 Former Graduate Student, Isfahan University of Technology
2 PProfessor, Isfahan University of Technologyrofessor, Isfahan University of Technology
3 Associate Professor, Isfahan University of Technology
چکیده [English]

Sewage sludge is widely used as a fertilizer and soil conditioner on agricultural lands. However because of high concentration of heavy metals in sewage sludge, it increases soil heavy metals concentration. The objective of this study was to evaluate the residual and cumulative effect of sludge application on heavy metals availability. This study was conducted in Lavark experimental site with four rates (0, 25, 50 and 100 ton/ha) of sewage sludge. The plots received one, two, three or four years of sludge applications. Corn (Zea mays) and wheat (Triticum sativum) were planted in the first and second half of each year, respectively. Soil samples were collected at the end of wheat growing season at 20 cm increments to 100 cm depth from each plot. Soil samples were analyzed for pH and electrical conductivity (EC) using a saturated paste, organic carbon ,calcium carbonate  and exchange capacity (CEC), extractable Cd, Pb, Cu, and Zn, and soil particle-size distribution, Chloride and bicarbonate concentrations were measured. Sewage sludge application result in heavy metals leaching and movement down ward in the soil profile. There was a high correlation between the Cd and Zn availability and amount of organic carbon and Cl- concentration and also between the Pb and Cu availability and amount of organic carbon in soil.  It seems that the formation of Cd and Zn complexes with Cl- and O.M and the formation of organic complex with Pb and Cu is the most important factors to increase the solubility and movement of these metals.

کلیدواژه‌ها [English]

  • Sewage sludge
  • Cd
  • Cu
  • Pb
  • Zn
  • Available
  • Mobility
  1. کرمی،م. 1383. اثرات تجمعی و باقی مانده لجن فاضلاب بر غلظت عناصر آرسنیک، جیوه، سرب و کادمیم در خاک و گیاه گندم. پایان نامه کارشناسی ارشد خاک شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
  2. Allison, L. E. and C. D. Modie. 1962. Carbonates. in: Methods of soil analysis, part 2, Black. Eds. Am. Soc. Gron. Madison, WI. 1379.
  3. Baker, A. J. M. 1981. Accumulation and excluders- strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643- 654.
  4. Barbarick, K. A., J. A. Ippolito and D. G. Westfall. 1997. Sewage biosolids cumulative effects on extractable-soil and grain elemental concentrations. Environ. Qual. 26: 1696- 1702.
  5. Baveye, P., M. B. Mc Bride, D. Bouldin, T. D. Hinesly, M. S. A. Dahahoh and M. F. Abdel-sabour. 1999. Mass balance and distribution of sludge-borne trace elements in a silt loam soil following long-term applications of sewage sludge. The Sci. Total Environ. 227: 13- 28.
  6. Beaton, K. W, M. J. Mc loughlin and R. D. Graham. 2000. Salinity increases cadmium uptake by wheat and swiss chard from soil amended with biosolids. J. Soil Res. 38: 37-45.
  7. Berti, W. R. and L. W. Jacobs. 1996. Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge application. J. Environ. Qual. 25: 1025- 1032.
  8. Bevg, R. C., W. J. Morse and T. M. Johnson. 1987. Hydrologic evaluation of the effects of surface application of sewage sludge to agricultural land near Rockton. In: Geol. Notes. 42: 119.
  9. Bloomfield, C. and G. Pruden. 1980. The behavior of Cr in soil under aerobic and anaerobic conditions. Environ. Pollut. 23: 103.
  10. Boekhold, A. E., E. J. M. Temminghoff and S. E. A. T. M. Van der zee. 1993. Influence of electrolyte composition and pH on cadmium sorption by an acid Sandy Soil. J. Soil Sci.44: 85- 96.
  11. Chammugathas, P. and J. M. Bollag. 1987. Microbial role in immobilization and subsequent mobilization of cadmium in soil suspensions. Soil Sci. Soc. Am. J. 51: 1184.
  12. Collins, R. N., G. Merrington, M. J. Mc Laughlin and J. L. Morel. 2003. Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils. Soil Sci. Soc. Am. J. 67: 112- 121.
  13. Dinkelaker, B., V. Romheld and H. Marschner. 1989. Citric acid extraction and precipitation of calcium citrate in the rhizosphere of White Lupin (Lupinus albus L.). Plant Cell Environ. 12: 285- 292.
  14. Dowdy, R. H., J. J. Sloan, M. S. Dolan and D. R. Linden. 1997. Long-term effects of biosolids applications on heavy metal bioavailability in agricultural soils. Environ. Qual. 26: 966- 974.
  15. Fleming, G. A., T. Walsh and P. Ryan. 1968. Some factors influencing the content and profile distribution of trace elements in Irish soils. in 9th Int. Soil Sci. Adelaide, Australia. 341.
  16. Hickey, M. G. and J. A. Kitrick. 1984. Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. Environ. Qual. 13: 372- 376.
  17. Kabata-Pendias, A. 2001. Trace Elements in Soils and Plants. 3rd. edition. CRC press.
  18. Keller, C., S. P. Mc Grath and S. I. Dunhan. 2002. Trace metal leaching through a soil grassland system after sewage sludge application. Environ. Qual. 31: 1550- 1560.
  19. Khoshgoftar, A. H., H. Shariatmadari, N. Karimian, M. Kalbasi, S. E. A. T. M. van der Zee and D. R. Parker. 2004. Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Sci. Soc. Am. J. 68: 1885- 1889.
  20. Kitagishi, K. and Yamane. Eds. 1981. Heavy Metals Pollution in Soils of Japan. Japan Sci. Soc. Press, Tokyo. 302.
  21. Lindsay, W. L. 1979. Chemical Equilibria in Soils. Colorado state university, Fort Collins.
  22. Mc Bride, M. B. 1994. Environmental chemistry of soils. Oxford university press. New York.
  23. Mc Bride, M. B. 1995. Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective?. Environ. Qual. 24: 5- 18.
  24. Mc Bride, M. B. and J. J Blasiak. 1979. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 43: 866.
  25. Mc Bride, M. B., B. K. Richards, T. Steenhuis, J. J. Russo and S. Sauve. 1997. Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci. 162 (7): 487.
  26. Mc Laughlin, M. J., D. R. Parker and J. M. Clarke. 1999. Metals and nutrients-Food safety issues. Field Crop Res. 60: 143- 163.
  27. Mingelgrin, U. and J. W. Bigger. 1986. Copper species in aqueous sludge extract. Water Air Soil Pollut. 28: 351.
  28. Renga Samy, P. 1983. Clay dispersion in relation to changes in the electrolyte composition of dialyzed red-brown earths. Soil Sci. 34: 723- 732.
  29. Rhoades, J. D. 1982. Soluble salts. in. Methods of Soil Analysis. Part 2. Pace, A. L. et al Eds. Am. Soc. Gron. Madison, WI. 247.
  30. Rhoads, J. 1986. Cation exchangeable capacity. 149-158.In: Methods of Soil Analysis. Part 2. Page, A. Eds. Am. Soc. Agron.
  31. Saber, B. R., R. L. Pendelton and B. L. Webb. 1990. Effect of municipal sewage sludge application on growth of reclamation shrub species in copper mine spoil. Environ. Qual. 19: 580- 586.
  32. Schmindt, U. 2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32: 1939- 1945.
  33. Smith, S. R. 1995. Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. nickel, copper and zinc uptake and toxicity to ryegrass. (a). Environ. Pollut. 105 (1): 83- 89.
  34. Stevenson, F. J. and A. Fitch. 1981. Reactions with organic matter. in Copper in soils and plants. Longeragan, J. F., A. D. Robson and R. d. Graham. Eds. Academic press. New York. 69.
  35. Stevenson, F. J. and L. f. Welch. 1979. Migration of applied lead in a field soil. Sci. Thechnol. 13: 1255.
  36. Streck, T. and J. Richter. 1997. Heavy metal displacement in a sandy soil at the field scale: modeling. Environ. Qual. 26: 56.
  37. Tyler, G. 1981. Leaching of metals from the A-horizon of a spruce forest soil. Water Air Soil Pollut. 15: 353.
  38. S. Environmental protection Agency. 1978. Sludge treatment and disposal. Vol. 2. Environmental Research Information center. No. 625/4-78-012, Cin Cinnati, OH.
  39. Walkly, A. and A. Black. 1934. An examination of Degtijaref method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. I. Experimental. Soil Sci. 79: 459- 465.
  40. Williams, S. E. and A. G. Wollum. 1981. Effect of Cd on soil bacteria and actinomycetes. J. Environ. Qual. 10 (2): 142- 147.
  41. Zahn, M. T. and K. P. Seiler. 1992. Field studies on the migration of arsenic and cadmium in a carbonate gravel aquifer near Munich (Germany). Hydrology. 133: 201- 214.