بررسی وضعیت سیلیسیوم در شالیزارهای استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی مؤسسه تحقیقات برنج

2 استادیار دانشکده علوم دانشگاه گیلان

3 عضو هیئت علمی

4 کارشناسان مؤسسه تحقیقات برنج

چکیده

به منظور بررسی وضعیت Si در شالیزارهای استان گیلان، یکصدونه نمونه خاک سطحی، با پراکندگی جغرافیایی یکنواخت انتخاب و متغیرهای pH، کربن‌آلی، ظرفیت تبادل کاتیونی، بافت، سیلیسیوم محلول در آب، Si استخراج شده بوسیله استات سدیم (NaOAc, pH= 4) و Si عصاره‌گیری شده با CaCl2 اندازه‌گیری شد. نتایج بررسی نشان داد که توزیع فراوانی غلظتSi محلول در آب نرمال بوده و میانگین Si در خاکهای مورد مطالعه بیش از حد بحرانی اعلام شده برای Si محلول در آب (6 میلی‌گرم درکیلوگرم) و عصاره‌گیری شده با استات سدیم (40 میلی‌گرم درکیلوگرم) است. همبستگی Si محلول در آب با هریک از متغیرهای pH، کربن‌آلی، سیلت و شن ضعیف و غیرمعنی‌دار و با رس و ظرفیت تبادل کاتیونی بیشتر و معنی‌دار است (به ترتیب با *50/0= r و*44/0= r ). اثر توأم کلیه متغیرهای فوق همبستگی معنی‌دارتری با Si محلول دارند (***84/0= r ). سیلیسیوم عصاره‌گیری شده توسط CaCl2 دو صدم مولار در دامنه 7/3 و 8/20 میلی‌گرم در کیلوگرم خاک و حدواسط بین حلالیت کوارتز و سیلیکات آمورفی قرار دارد. غلظت Si محلول در آب در نواحی غرب گیلان و حوزه آبخیز رودخانه سپیدرود بیشتر از بقیه نواحی و در ناحیه فومنات کمتر است، این روند مشابه با توزیع مقدار رس در این نواحی است. در حوزه آبخیز سپیدرود به دلیل انتقال و رسوب ذرات رس توسط آب رودخانه و شبکه‌های آبیاری منشعب از آن و در ناحیه گیلان غربی به دلیل رسوبات آبرفتی دامنه‌ای، مقدار رس و در نتیجه کانیهای آلومینوسیلیکات بیشتر از بقیه نواحی است و در نتیجه با حد بالایی از غلظت Si محلول در تعادل می‌باشند. خاکهای ناحیه فومنات با توجه به آنکه دارای منشاء رسوبات ساحلی قدیمی و آبرفتی رودخانه‌ای می‌باشند دارای مقدار رس کمتری بوده و در نتیجه با غلظت‌های کمتری از Si به تعادل می‌رسند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Silicon Status in Gilan Paddy Soils

نویسندگان [English]

  • N. Davatgar 1
  • A. Aliakbar 2
  • A. Shahdi Kumleh 3
  • M. Paykan 4
  • M. Ahmadipour 4
1 Researcher, Rice Researcher Institute
2 Assistant Prof. School
3 Sciences Gilan University
4 Researcher; and experts, Rice Research Institute, respectively
چکیده [English]

Although silicon (Si) is found at much higher concentrations than phosphorus and potassium in healthy rice crops and temperate paddy soils, it has received less attention. In order to evaluate the level of available silicon in Gilan paddy soils, one hundred and nine surface soil samples were collected. The soils had a uniform geographic distribution and the variables of pH, organic carbon, cation exchange capacity, water- soluble Si and Si extracted by molar sodium acetate at pH4 (NaOAc, pH=4) were measured in all the samples. Water-soluble Si had a normal frequency distribution. The range and mean values of water- soluble Si and Si extracted by acetate (NaOAc, pH=4) were more than critical limits proposed, (6 mg/kg for water- soluble Si) and 40 mg/kg for Si (NaOAc, pH=4). Correlation coefficients between variables of pH, O.C, silt and sand with water- soluble Si were low and non- significant. Correlation coefficient between the variables clay and cation exchange capacity with water -soluble Si, were higher and significant (r =0.5* and r =0.44*). Silicon extraction by 0.02M CaCl2 was found to lie in the range of 3.7 to 20.8 mg.kg-1 and was intermediate between the solubility of quartz and amorphous silica. West of Gilan and Sepeedrood catchments were found to have relatively more water soluble Si. In Foomanat region such values were less than those of any other region. These trends were similar to clay contents distributions in this region. In Sepeed rood catchments due to vehicle transportation and deposition of clay particles by river and irrigation systems, high clay contents were seen. The clay contents of west Gilan were also high due to alluvial deposition.  Aluminusilicate minerals dominate these clay fractions that can attain equilibrium with high levels of Si in soil solution. Foomanat region soils, formed on ancient coastal and river alluvial depositions, have low clay contents that attain equilibrium with low levels of Si in soil solution.

کلیدواژه‌ها [English]

  • Water-Soluble Si
  • Si frequency distribution
  • Quartz
  • Amorphous silica
  • SiO2 to organic matter
  1. پاداشت دهکایی، ف. 1378. آثار نیتروژن و سیلیس روی بیماری بلاست برنج. مجله علوم کشاورزی ایران، جلد30، شماره 4 : 742- 735.
  2. ترابی گلسفیدی، ح. 1380. پیدایش، رده‌بندی و ارزیابی تناسب اراضی خاکهای اراضی خیس برای کشت برنج در شرق استان ‌گیلان. پایان‌نامه دکتری. دانشکده ‌کشاورزی دانشگاه صنعتی‌ اصفهان. اصفهان: 179-174.
  3. شهدی کومله، ع. 1379. بررسی تأثیر متقابل کاربرد سیلیسیوم و فسفر در وضع ظاهری، عملکرد و برخی خصوصیات شیمیایی خاک شالیزار. گزارش نهایی. مؤسسه تحقیقات برنج کشور، رشت: 14.
  4. صائب، ح.، ق. نوری قنبلانی و غ. رجبی. 1380. مقایسه مقاومت تعدادی از ژنوتیپهای برنج استان گیلان نسبت به کرم ساقه‌خوار نواری برنج و بررسی نقش سیلیس در ایجاد مقاومت. مجله علوم کشاورزی، جلد7، شماره4. ص: 25-17.
  5. یزدانی، م. 1381. بررسی میزان آورد سیلیسیوم توسط شبکه آبیاری سپیدرود. گزارش نهایی. مؤسسه تحقیقات برنج کشور. رشت: 16.
  6. مطالعات خاکشناسی نیمه تفضیلی مناطق شرق و غرب گیلان. 1355. وزارت نیرو. امور توسعه منابع آب: 42 و 122.
  7. Chang, S. C. 1978. Evaluation of the fertility of rice soils. p: 521- 541. In Soils and Rice. Los Banos. Philippines.
  8. Deren, C. W., L. E. Datnoff, G. H. Snyder, and F. G. Martin. 1994. Silicon concentrations, disease response, and yield components of rice genotypes grown on flooded organic Histosol. Crop Science. 34: 733-737.
  9. Dress, L. D., L. P. Wilding, N. E. Smeck and A. L. Senkayi. 1989. Silica in soils: Quarts and disordered silica polymorphs. P. 913-974. In J. B. Dixon and S. B. Weed (eds.) Minerals in Soil Environments. 2nd ed. ASA and SSSA, Madison, WI.
  10. Doberman, A., and T. Fairhurst. 2000. Rice nutrient disoroders and nutrient management. International Rice Research Institute. LosBanos. Philippines
  11. Elgawhary, S. M., and W. L. Lindsay. 1972. Solubility of silica in soils. Soil Sci. Soc. Am. Proc. 36: 439-442.
  12. Govertt, G. J. S. 1961. Critical factors in determining of silica. Anal. Chem. Acta.
    25: 69-80.
  13. Hallmark, C. T., L. P. Wilding and N. E. Smeck. 1986. Silicon. p. 263- 273. In L. Page (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron Monogr. 9. ASA and SSSA, Madison, WI.
  14. Hesse, P. R. 1971. A Textbook of Soil Chemical Analysis. Chemical Publishing Co., Inc., NewYork.
  15. S. U. 1982. Fertilizers and Soil Fertility. 2nd. ed Reston Publishing Co. Virginia.
  16. Lindsay, W. L. 1979. Chemical Equilibria in Soils. John Wiley and Sons. New York.
  17. McKeague, J. A., and M. G. Cline. 1963. Silica in Soil Solution. II. The absorption of monosilicic acid by soil and by other substances. Can. J. Soil Sci. 43: 83-46.
  18. Nonaka, K., and K. Takahashi. 1988. A method of measuring available silicates in paddy soils. Japanese. Agric. Res. Quart. 22: 91-95.
  19. Ponnamperuma, F. N. 1972. The Chemistry of Submerged Soils. Adv. Agron. 24: 29- 96.
  20. Savant, N. K., G. H. Snyder, and L. E. Datnoff. 1997. Silicon management and sustainable rice production. Adv. Agron. 58: 151- 199.
  21. Takahashi, E., Ma, J. F., and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2, 99- 122.
  22. Winslow, M. D. 1992. Silicon, disease resistance and yield of rice genotypes under upland cultural conditions. Crop Sci. 32: 1208- 1213.
  23. Winslow, M. D., K. Okada and F. C. Victoria. 1997. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant Soil. 188: 234-248.
  24. Yamauchi, M., and M. D. Winslow. 1987. Silica reduces disease on upland rice in high rainfall area. Int Rice Res. Inst. Newsl. 12: 22-23.
  25. Yoshida, S. 1975. Factors that limit the growth and yields of upland rice. In Major Research in Upland Rice. P. 46-71. The International Rice Research Institute. LosBanos. philippines