بررسی پراکنش مکانی کربن آلی خاک در منطقه فندوقلو استان اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت منابع خاک دانشگاه شهرکرد

2 دانشیار گروه علوم و مهندسی خاک دانشگاه شهرکرد

3 استادیار گروه علوم و مهندسی خاک دانشگاه شهرکرد

10.22092/ijsr.2023.359807.677

چکیده

پتانسیل یک خاک­منظر به­عنوان ذخیره­گاه کربن با برآورد میزان کربن آلی خاک در مقیاس منطقه­ای مشخص می­شود. این بررسی با اهداف شناسایی (1) مناسب­ترین ویژگی­های خاک و محیط به­عنوان داده­های کمکی برای برآورد تراکم کربن آلی خاک و (2) روش مناسب برای پهنه­بندی تراکم کربن آلی خاک از بین روش­های کریجینگ معمولی، کوکریجینگ و رگرسیون-کریجینگ در منطقه فندوقلو، استان اردبیل انجام شد. در گام نخست پایگاه داده­های سامانه اطلاعات جغرافیایی منطقه مطالعاتی با معرفی داده­های خاک، توپوگرافی و ماهواره­ای ایجاد شد. سپس با استفاده از نقشه­های کاربری اراضی،   خاک و زمین­شناسی مکان برداشت 140 نمونه خاک مرکب سطحی (15-0 سانتی­متر) با استفاده از فنّ اَبَر مکعب لاتین در منطقه مزبور مشخص شد. نتایج نشان داد که نوع کاربری اراضی به­طور معنی­داری (01/0P ≤ ) بر تراکم کربن خاک مؤثر بوده و تراکم کربن آلی خاک در اراضی مرتعی بیش­تر از زراعی بود. نیتروژن کل خاک و میانگین قطر خاکدانه­ها همبستگی معنی­داری (001/0P ≤ ) با تراکم کربن آلی خااک نشان دادند و به­عنوان داده­های کمکی برای برآورد تراکم کربن آلی خاک قابل استفاده بودند. کاربرد کوکریجینگ همراه با نیتروژن کل خاک به­عنوان داده کمکی، پهنه­بندی تراکم کربن خاک را در مقایسه با کریجینگ معمولی بهبود بخشید. بطور کلی، نتایج این پژوهش نشان داد که رگرسیون-کریجینگ بیش­ترین کارایی را برای پهنه­بندی تراکم کربن خاک داشت و نیتروژن کل خاک، میانگین وزنی خاکدانه­ها، شاخص تفاضل گیاهی نرمال و انحنای زمین مهم­ترین ویژگی­های مؤثر خاک­منظر بر تراکم کربن آلی خاک بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Spatial Distribution of Soil Organic Carbon in Fandooqlo Region of Ardabil Province, Iran

نویسندگان [English]

  • mehran behtari 1
  • mehdi Naderi Khorasgani 2
  • ahmad karimi 3
1 PhD Student of Soil Resource Management, Shahrekord University
2 Associate Professor, Dept. of Soil Science and Engineering, Shahrekord University
3 Assistant Professor, Dept. of Soil Science and Engineering, Shahrekord University
چکیده [English]

Estimating the amount of soil organic carbon on a regional scale determines the potential of a landscape soil as a carbon storage site. This study was carried out in the Fandoqloo Region, Ardabil Province, Iran, and aimed to introduce: (i) the most suitable soil and environment characteristics as ancillary data for estimating soil organic carbon density (SOCD) and (ii) the most appropriate method for mapping SOCD among ordinary kriging (OK), co-kriging (CoK) and regression-kriging (RK) models. To fulfil the objectives, geographic information systems' database of the study area was developed by introducing soil, topographic and satellite data in the first step. Next, using Latin Hypercube (LHC) techniques and soil, land use, and geology maps and 140 sites were determined in the study area for collecting surficial (0-15 cm) compound soil samples. Results indicated that the land use type significantly affected SOCD (P ≤ 0.01) and SOCD of rangelands was higher than of croplands. Soil total nitrogen and mean weight diameter (MWD) were significantly (P ≤ 0.001) correlated with SOCD and could be applied as ancillary data for estimation of SOCD. Statistical indices revealed that application of co-kriging along with total soil nitrogen as ancillary data improved SOCD mapping compared with ordinary kriging. In general, this research indicated that regression-kriging was the most efficient method for mapping SOCD and total soil nitrogen, MWD, normalized difference vegetation index (NDVI) and plane curvature were significant soilscape characteristics that affect SOCD distribution. 

کلیدواژه‌ها [English]

  • Ancillary data
  • Total soil nitrogen
  • Ordinary kriging
  • Co-kriging
  • Regression-kriging
  1. اشرفی، ع.، و م. ا. علیمی. 1393. مقایسة روش­های مختلف تهیة مدل ارتفاع رقومی مورد شناسی: حوضة آبخیز نوفرست، شهرستان بیرجند، استان خراسان جنوبی. جغرافیا و آمایش شهری – منطقه­ای،140:13-119.
  2. اصفری، ش.، س. هاشمیان صوفیان.، ا. گلی کلانپا، و م. محب الدینی. 1394. اثرات تغییر کاربری اراضی بر شاخص­های کیفیت خاک در شرق استان اردبیل. نشریه پژوهش­های حفاظت آب و خاک. 22(3): 19-1.
  3. پیله‌ور شهری، ا. ر.، ش .ا. ایوبی.، و ح. خادمی. 1389. مقایسه مدل شبکه عصبی مصنوعی و رگرسیون خطی چند متغیره در پیش­بینی کربن آلی خاک به کمک داده­های آنالیز سطح زمین (مطالعه موردی: منطقه ضرغام آباد سمیرم). نشریه آب و خاک، 24(6): 1163-1151.
  4. تقی­زاده مهرجردی، ر.، ف. سرمدیان.، م. امید.، غ. ثوابقی.، م. ج. روستا.، و م. ج. رحیمیان. 1391. پهنه­بندی شوری خاک با استفاده از تکنیک زمین آمار و دستگاه القاءگر الکترومغناطیس در منطقه اردکان. مجله پژوهش­های خاک (علوم خاک و آب)، 26(4): 380-369.
  5. تیمورزاده، ع.، ا. قربانی.، و ا. ح. کاویان­پور. 1394. بررسی فلور، شکل زیستی و کورولوژی گیاهان جنگل­های جنوب­شرقی شهرستان نمین(اسیقران، فندوقلو، حسنی و بوبینی) در استان اردبیل. مجله پژوهش­های گیاهی، 28(2): 275-264.
  6. جعفری، م.، ح. عسگری.، م. معظمی.، م. بی نیاز.، و م. طهمورث. 1387. بررسی توزیع مکانی برخی از خصوصیات خاک با کاربرد روش های زمین آماری. پژوهش و سازندگی در زراعت و باغبانی، 80: 185-176.
  7. جمالی، ز.، م. اونق.، و ع. سلمان ماهینی. 1398. تحلیل ارتباط دمای سطح زمین با کاربری اراضی و شاخص اختلاف گیاهی نرمال­شده در دشت گرگان. برنامه­ریزی و آمایش فضا. ٢٣ (3): 194-175.
  8. جوان، ف.، ح. حسنی­مقدم.، و ح. ترابی. 1399. ارزیابی روند تخریب اراضی جنگلی با استفاده از الگوریتم شبکه عصبی مصنوعی (مورد مطالعه: جنگل­های فندوقلو شهرستان نمین). فصل­نامه علمی محیط زیست و توسعه فرابخشی، 5(69): 74-63.
  9. عطائیان، ب.، ش. شجاعی­فر.، و. زندیه.، و س. هاشمی. 1396. بررسی تغییرات کربن آلی خاک در دو منطقه بحرانی و آسیب پذیر مراتع دشت قهاوند با استفاده از سنجش از دور و GIS. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(4): 90-76.
  10. موسوی، س. ر.، ف. پارسایی.، ا. رحمانی.، م. ح. سدری.، و م. کوهسار بوستانی. 1399. پیش­بینی مکانی برخی از ویژگی­های خاک سطحی با استفاده از مدل­های درونیابی و یادگیری ماشین. نشریه مدیریت خاک و تولید پایدار، 10(3): 49-27.
  11. Barsi, J. A., J. R. Schott., S. J. Hook., N. G. Raqueno., B. L. Markham., and G. Radocinski. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sen, 6(11): 11607-11626.
  12. Bhunia, G.S., P. K. Shit., and H. R. Pourghasemi. 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int, 1-12.
  13. Bolin, B., and R. Sukumar. 2000. Global perspective: In land use, land-use change, and forestry; Watson, R. T., Nobal, I. R., Bolin, B., Racindranath, N.H., Verardo, D.J., Dokken, D. J., Eds.; Cambridge University Press: Cambridge, UK, pp. 23–51.
  14. Bongiovanni, M. D., and J. C. Lobartini. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by Geoderma, 136(3-4): 660-665.
  15. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron J. 54: 464-465.
  16. Buschiazzo, D. E., A. R. Quiroga., and K. Stahr. 1991. Patterns of organic matter accumulation in soil sof the semiarid Argentinean Pampas. Z Pflanz Bodenkunde, 154: 437-441.
  17. Cahn, M. D., J. W. Hummel., and B. H. Brouer. 1994. Spatial analysis of soil fertility for site-specific crop management. SSSAJ, 58: 1240-1248.
  18. Cambardella, C. A., T. B. Moorman., J. M. Novak., T. B. Parkin., D. L. Karlen., R.F. Turco., and A. E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. SSSAJ, 58: 1501–1511.
  19. Conforti, M., G. Matteucci., and G. Buttafuoco. 2017. Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve Marchesale (Calabria region, southern Italy). J. Maps, 13: 91–99.
  20. Davidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165–173.
  21. De Vos, B., S. Lettens., B. Muys., and J. A. Deckers. 2007. Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manage. 23: 221–229.
  22. Dontree, S. 2010. Relation of land surface temperature (LST) and land use/land cover (LULC) from remotely sensed data in Chiang Mai— Lamphun basin. In SEAGA conference.
  23. Dubrule, O. 1983. Cross validation of kriging ina unique neighborhood. Math Geol, 15(6): 687-699.
  24. Fang, X., Z. Xue., B Li., and S. An. 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena, 88: 6-13.
  25. Fenton, G., K. R Helyar., and P. Orchard. 1993. Soil acidity and liming. NSW Agriculture Agfact AC 19.
  26. Fissore, C., B. J. Dalzell., A. A. Berhe., M. Voegtle., M. Evans., and A. Wu. 2017. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149.
  27. Florinsky, I. V. 2012. Digital terrain analysis in soil science and geology, Elsevier/Academic Press.
  28. Flynn, T., W. de Clercq., A. Rozanov., and C. Clarke. 2019. High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey. J. Plant. Nutr. Soil. Sc, 237-247.
  29. Gia Pham, T., M. Kappas., C. Van Huynh., and L. Hoang Khanh Nguyen. 2019. Application of ordinary kriging and regression kriging method for soil properties mapping in hilly region of central Vietnam. ISPRS Int. J. Geoinf, 8(3): 147.
  30. Geissen, V., R. Sánchez-Hernández., C. Kampichler., R. Ramos-Reyes., A. Sepulveda-Lozada., S. Ochoa-Goana., B. H. de. Jong., E. Huerta-Lwanga., and S. Hernández-Daumas. 2009. Effects of land use change on some properties of tropical soils-an example from southeast Mexico. Geoderma, 151: 87-97.
  31. Hazelton, P., and B. Murphy. 2007. Interpreting soil test results. CSIRO publishing. pp:169.
  32. Hengel, T., G. B. M. Heuvelink., and A. Stein. 2004. Generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120: 75–93.
  33. Hosseini, M., S. A. Movahedi Naeini., A. A. Dehghani., and Y. Khaledian. 2016. Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods. Soil Tillage Res, 157: 32–42.
  34. Isaaks, E. H., and R. M. Srivastava. 1989. An introduction to applied geostatistics; Oxford Unviversity Press: New York, NY, USA.
  35. Jakšic, S., J. Ninkov., S. Milic., J. Vasin., M. Živanov., D. Jakšic., and V. Komlen. 2021. Influence of slope gradient and aspect on soil organic carbon content in the region of Niš, Serbia. Sustainability, 13(8332):1-17.
  36. Jobbágy, E. G., and R. B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl, 10, 423–436.
  37. John, K., I. A. Isong., N. M. Kebonye1., P. C. Agyeman., A. E. Okon., and A. S. Kudjo. 2021. Soil organic carbon prediction with terrain derivatives using geostatistics and Sequential Gaussian simulation. JSSAS, 1-32.
  38. Ke, Y., J. Im., J. Lee., H. Gong., and Y. Ryu. 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and insitu observations. Remote Sens. Environ, 164: 298-313.
  39. Kemper, W. D., and R. C. Rosenau. 1986. Methods of soil analysis. Part 1. physical and mineralogical methods. Agronomy Monograph No. 9 (2nd Edition).
  40. Kravchenko, A. N., and D. G. Bullock. 2000. Correlation of corn and soybean grain yield with topography and soil properties. Agron. J, 92:75–83.
  41. Lefèvre C., F. Rekik., V. Alcantara., and L. Wiese. 2017. Soil organic carbon the hidden potential. FAO
  42. Le Quere, C. 2015. Global carbon budget. 2014. Earth Syst. Sci. Data, 7: 47–85.
  43. Liao, K., S. Xu., J. Wu., and Q. Zhu. 2013. Spatial estimation of surface soil texture using remote sensing data. J. Plant. Nutr. Soil. Sci, 59(4): 488-500.
  44. Liu, Zh. P., M. A. Shao., and Y. Q. Wang. 2112. Estimating soil organic carbon across a large-scale region: a state-space modeling approach. J. Soil Sci, 111: 611-618.
  45. Liu, J., B. Shi., H. Jiang., S. Bae., and Huang. 2009. Improvement of waterstability of clay aggregates admixed with aqueous polymer soil stabilizers. Catena, 77(3): 175-179.
  46. Matejovic, I. 1995. Total nitrogen in plant-material determined by means of dry combustion-a possible alternative to determination by Kjeldahl digestion. Commun. Soil. Sci. Plant. Anal, 26: 2217-2229.
  47. Meng, Q. 2014. Regression kriging versus geographically weighted regression kriging versus geographically weighted regression for spatial interpolation.  Int. J. Adv. Remote Sens. GIS, 3: 606–615.
  48. Mitasova, H., J. Hofierk., M. Zlocha., and L. Iverson. 1996. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Sci, 10(5): 629-641.
  49. Moore, I. D., P. E. Gessler., G. A. Nielsen., and G. A. Peterson. 1993. Soil attribute prediction using terrain analysis. SSSAJ. 57: 443–452.
  50. Muchena, R. 2017. Estimating soil carbon stocks in a dry miombo ecosystem using remote sensing. Chesa Forest Res Stat, 6: 2-6.
  51. Mueller, T. G., and F. J. Pierce. 2003. Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. SSSAJ, 67: 258–267.
  52. Pandey, C. B., S. K. Chaudhari., J. C. Dagar., G. B. Singh., and R. K. Singh. 2010. Soil N mineralization and microbial biomass carbon affected by different tillage levels in a hot humid tropic. Soil Tillage Res, 110: 33-41.
  53. Radocaj, D., I. Jug., V. Vukadinovic., M. Jurišic., and M. Gašparovic. 2021. The effect of soil sampling density and spatial autocorrelation on interpolation accuracy of chemical soil properties in arable cropland. J. Agron, 11(2430): 1-15.
  54. Rouse, J. W., R. H. Haas., J. A. Schell., and D.W. Deering. 1973. Monitoring vegetation systems in the great plains with ERTS. 3rd ERTS Symposium, NASA SP-351, Washington DC, 10-14 December, 309-317.
  55. Sarmadian, F., A. Keshavarzi., A. Rooien., M. Iqbal., G. Zahedi., and H. Javadikia. 2014. Digital mapping of soil phosphorus using multivariate geostatistics and topographic information. Aust. J. Crop Sci, 8: 1216–1223.
  56. Shields, M. D., and J. Zhang. 2016. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf, 148: 96–108.
  57. Smith, P. 2004. Soils as carbon sinks—The global context. Soil Use Manage. 20: 212–218.
  58. Sun, W., B. Minasny., and A. McBratney. 2012. Analysis and prediction of soil properties using local regression-kriging. Geoderma, 171(172): 16–23.
  59. Taghizadeh-Mehrjardi, R., K. Nabiollahi., and R. Kerry. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266: 98–110. 
  60. Templeton, G. F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst, 28 (4):41-58.
  61. Waga, K., J. Malinen., and T. Tokola. 2020. A topographic wetness index for forest road quality assessment: An application in the lakeland region of Finland. Forests, 11(11):1-13.
  62. Wang, S., Q. Zhuang., S. Jia., X. Jin., and Q. Wang. 2018. Spatial variations of soil organic carbon stocks in a coastal hilly area of China. Geoderma, 314: 8–19.
  63. Wang, Y., B. Fu., Y. Lu., Ch. Song., and Y. Luan. 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quat. Res, 73: 70–76.
  64. Wang, B., W. Zhou., S. Ma., S. Liu., L. Yu., C. Zheng., and J. Wang. 2012. Regression-kriging of soil organic matter using the environmental variables derived from MODIS and DEM. J. Agric. Sci. Technol, 13(4): 838-842.
  65. Wu, Z., Y. Liu., G. Li., Y. Han., X. Li., and Y. Chen. 2022. Influences of environmental variables and their interactions on Chinese farmland soil organic carbon density and its dynamics. Land, 11(208):1-16.
  66. Wu, C., J. Wu., Y. Luo., L. Zhang., and S. D. De 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. SSSAJ, 73: 1202–1208.
  67. Xu, Y., S. E. Smith., S. Grunwald., A. Abd-Elrahman., S. P. Wani., and V. D. Nair. 2018. Estimating soil total nitrogen in smallholder farm settings using remote sensing spectral indices and regression kriging. Catena, 163: 111–122.
  68. Yevheniya, V., N. Jenny., R. Lars., and T. Norberg. 2014. A minimum data set for evaluating the ecological soil functions in remediation projects. J. Soils Sediments, 14: 1850–1860.
  69. Zevebergen, L. W., and C. R. Thorne. 1987. Quantitative analysis of land surface Earth Surf Process Lan, 12: 47-56.
  70. Zhang, Y., L. Guo., Y. Chen., T. Shi., M. Luo., Q. Ju., and S. Wang. 2019. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan plain in Hubei province, China. Remote Sen, 11(14): 1683-1695.
  71. Zhu, Q., and H. S. Lin. 2111. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere, 21: 514-616.
  72. Zou, J., and B. Osborne. 2021. Spatially related sampling uncertainty in the assessment of labile soil carbon and nitrogen in an Irish forest plantation.  Appl. Sci,11(2139): 1-13.
  73. منابع اینترنتی:
  74. https://www.earthexplorer.usgs.gov/
  75. https://www.ncc.gov.ir/
  76. http://www.nsisi.swri.ir/

https://www.rsgisc.com/