ارزیابی اثر نیترات کلسیم بر ویژگی های رشد نهال ژنوتیپ‌های انتخابی انار در شرایط شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

2 دانشجوی کارشناسی ارشد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، یزد، ایران

3 استادیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، یزد، ایران

10.22092/ijsr.2023.360705.690

چکیده

به­منظور ارزیابی کاربرد نیترات کلسیم بر برخی از ویژگی­های رشد ژنوتیپ­های انتخاب شده انار در شرایط شور، آزمایشی به­صورت فاکتوریل بر پایه طرح بلوک کامل تصادفی با دو عامل ژنوتیپ و رقم در شش سطح (پوست سیاه اردکان، چاه افضل، نرک لاسجرد سمنان، وحشی بابلسر،ملس یزدی و رباب نیریز) و تیمار نیترات کلسیم در سه سطح شاهد(0)، 50 و 100 کیلوگرم در هکتار در سه بلوک و در هر بلوک با 3 تکرار و در مجموع با 162 درخت در شوری ثابت آب آبیاری 5/0±9 دسی زیمنس برمتر در سال 1399-1398 در ایستگاه چاه افضل مرکز ملی تحقیقات شوری، انجام شد. نتایج نشان داد که نوع ژنوتیپ و سطح نیترات کلسیم بر تغییرات صفات مورفولوژیک، فیزیولوژیک و غلظت عناصر غذایی به طور معنی­داری مؤثر است. بر اساس نتایج به دست آمده، بیشترین و کمترین درصد نکروزه­گی (12% و 2%)، نسبت سطح برگ (1845 و 879 میلی­متر مربع برگرم وزن خشک)، محتوی رطوبت نسبی (8/80% و 4/52%)، کلروفیل کل (4/11 و 45/6  میلی­گرم بر گرم وزن تر)، محتوی پتاسیم (378/0% و 322/0%) و کمترین و بیشترین محتوی سدیم (88/1% و 75/2%)، محتوی نشت یونی (85/14% و 02/30%) و نسبت سدیم به پتاسیم (118/0 و 197/0) به ترتیب در ژنوتیپ­های چاه افضل و با کاربرد 100 کیلوگرم در هکتار نیترات کلسیم و رقم رباب نیریز بدون کاربرد نیترات کلسیم مشاهده شد. ژنوتیپ چاه افضل از طریق حفظ خصوصیات رشدی خود و افزایش جذب پتاسیم در مقابل سدیم، شرایط رشدی مناسبتری نسبت به سایر ژنوتیپ های مطالعه شده در این تحقیق از خود نشان داد. همچنین نتایج نشان داد که کاربرد 100 کیلوگرم در هکتار از نیترات کلسیم در ابتدای فصل رشد به طور معنی­داری موجب بهبود خصوصیات رشدی و کاهش اثرات مخرب سدیم در تمامی ژنوتیپ­های مورد مطالعه شد. لذا توصیه می­شود با توجه به میزان شوری آب و خاک باغات، از این ترکیب در ابتدای فصل رشد استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effect of Calcium Nitrate on Growth Characteristics of Selected Pomegranate Genotypes in Saline Conditions

نویسندگان [English]

  • Ali Momenpour 1
  • Sareh Sabahi 2
  • Azam Jafari 3
  • Mostafa Shirmardi 3
1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
2 MSc student, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran
3 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran
چکیده [English]

To evaluate the effect of calcium nitrate on some growth characteristics of selected pomegranate (Punica granatum) genotypes, a factorial experiment was carried out based on randomized complete block design (BCRD) with 3 replications at Chahafzal Station of the National Salinity Research Center of Iran, in 2019-2020. Two factors were studied: genotypes at 6 levels (Post-Siyah Ardakan, Rabab Neyriz, Chah Afzal, Narak Lasjerd Semnad ,Vahshi Babolsar, and Malas Yazdi) and calcium nitrate at 3 levels (0 (control), 50 and 100 kg/ha), using irrigation water salinity of 9±0.5 dS/m.  The results showed that type of genotype and levels of calcium nitrate affected morphological and physiological characteristics and concentration of nutrient elements in leaves. The highest and lowest necrotic leaves (12% and 2%), leaf surface ratio (1845 and 879 mm2/g dry weight), relative water content (80.83% and 52.40%), total chlorophyll (11.4 and 6.45 mg/g fresh weight), potassium content (0.378% and 0.322%) and lowest and highest sodium content (1.88% and 2.75%), relative ions leakage (14.85% and 30.02%) and sodium to potassium ratio (0.118 and 0.197) was observed in Chah Afzal with 100 kg/ha of calcium nitrate and Rebab Niriz without calcium nitrate application, respectively. Overall, Chah-Afzal was recognized as the most tolerant genotypes to saline condition. This genotype showed more suitable growth than the other genotypes by maintaining its growth characteristics and increasing potassium uptake compared to sodium. Also, the results showed that application of 100 kg/ha of calcium nitrate at the beginning of the growing season significantly improved the growth characteristics and reduced the harmful effects of sodium in all studied genotypes.

کلیدواژه‌ها [English]

  • Saline waters
  • Calcium nitrate
  • Na+ to K+ ratio
  • Chah Afzal’ genotype
  1. احمدی، ک.، ح. قلیزاده، ح. عبادزاده، ف. حاتمی، ر. حسینپور، ه. عبدشاه، م. رضایی و م. فضلی استبرق. 1396. آمارنامه کشاورزی سال 1395. (جلد سوم: محصوالت باغبانی). انتشارات وزارت جهاد کشاورزی، تهران.
  2. جماعتی اردکانی، ز.، م. دهستانی اردکانی، ع. مومن­پور و م. شیرمردی.1400. مقایسه تحمل به شوری سه رقم انار تجاری (Punica granatum L). تولیدات گیاهی 44 (1): 142-131.
  3. حیدری شریف آباد، ح. 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
  4. رحیمیان، م. ح.، ح. غلامی، غ. ح. رنجبر، ح. بیرامی، ب. مروج الاحکامی، م. کریمی و س. ع. چراغی. 1400. برهمکنش حجم آب مصرفی و شوری آب آبیاری بر عملکرد گندم در مناطق خشک (مطالعه موردی: یزد). آب و توسعه پایدر. 8 (4): 43-50.
  5. مظفری، ح. و خ. منوچهری کلانتری. 1383. نقش کلسیم در کاهش اثرات شوری در گیاه خاکشیر Descurainia Sophia.  پژوهش و سازندگی، زراعت و باغبانی، 65: 99- 103.
  6. مومن پور، ع.، د. بخشی، ع. ایمانی و ح. رضایی.  a اثر تنش شوری بر غلظت عناصر غذایی در رقم های بادام ’شکوفه‘، ’سهند‘ و ژنوتیپ’۴۰-۱۳‘ پیوند شده روی پایه GF677. مجله علوم باغبانی مشهد، 29 (2): 255-268.
  7. مومن پور، ع.، د. بخشی، ع. ایمانی و ح. رضایی.  a  اثر تنش شوری بر خصوصیات رشدی و غلظت عناصر غذایی در رقم‌های بادام ’شاهرود 12‘، ’تونو‘ و ژنوتیپ’16-1‘ پیوند شده روی پایه  GF677. مجله به­زراعی کشاورزی ابوریحان 17 (1): 216-197.
  8. مومن پور، ع.، د. بخشی، ع. ایمانی و ح. رضایی.  b اثر تنش شوری بر خصوصیات مورفولوژیک و فیزیولوژیک در برخی از ژنوتیپ‌های انتخابی بادام پیوند شده روی پایه. مجله فنآوری تولیدات گیاهی. 7 (2): 152-137.
  9. مومن پور، ع.، ع. ایمانی، د. بخشی و ح. رضایی.   b ارزیابی تحمل به شوری در برخی از ژنوتیپ های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس  کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 9-28.
  10. مومن پور، ع.، و. سلطانی گرد فرامرزی، م. ه. راد، م. ر. وظیفه شناس، ا. آناقلی، ف. احمدی و ز. جماعتی اردکانی (1399). تعیین آستانه تحمل شوری ژنوتیپ های مختلف انار. پژوهش های آب در علوم کشاورزی 34 (1): 1-14.
  11. ولی‌پور، م.، م. کریمیان اقبال، م. ج. ملکوتی و ا. ح. خوشگفتارمنش. 1387. روند توسعه شوری و تخریب اراضی ‏کشاورزی در منطقه شمس‌آباد استان قم. علوم و فنون کشاورزی و منابع طبیعی، 12 (46): 691-683.‏
  12. Arnon, D.I. 1949. Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology. 24: 1- 15.
  13. Bayuelo-Jiménez, J. S., D. G. Debouck and J. P. Lynch 2003. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Research. 80 (3): 207- 222.
  14. El-Agamy, S. Z., R. A. Mostafa, M. M. Shaaban and M. T. El-Mahdy. 2010. In vitro salt and drought tolerance of Manfalouty and Nab El-Gamal pomegranate cultivars. Aust J Basic Appl Sci. 4 (6): 1076- 1082.
  15. Emami, A. 1996. Methods of plant analysis. Agricultural Research and Education Organization. Soil and Water Institute. 130 Pp.
  16. Fipps, G. 2003. Irrigation water quality standards and salinity management strategies. Texas Agricultural Extension Service. Pp 1-18.
  17. Grattan, S. R. and C. M. Grieve, 1999. Salinity mineral nutrient relations in horticultural crop. Science Horticulture. 78: 127- 157.
  18. Guo, F.O., and Tang. Z.C. 1999. Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt tolerant mutant of wheat. Chinese Academy of Sciences. 41 (9): 217-220.
  19. Jadidi, E. M. Tatari, M. Ghasemnezhad, and H. R. Salemi, 2020. Morphological and biochemical response of eight pomegranates (Punica granatum L.) cultivars under salinity stress. Journal of Horticulture and Postharvest Research, 3(Special Issue-Abiotic and Biotic Stresses): 139- 152.
  20. Karimi, H.R., and Z. Hasanpour, 2014. Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (Punica granatum ). Journal of Plant Nutrition. 37:1937-1951.
  21. Liu, C., Y. Ming, H. Xianbin, and Y. Zhaohe. 2018. Effects of salt stress on growth and physiological characteristics of pomegranate (Punica granatum ) cuttings. Pakistan Journal of Botany. 50 (2): 457-464.
  22. Lutts, S., J.M. Kinet, and J. Bouharmont, 1995. Changes in plant response to NaCl during development of rice (Oryza sativa ) varieties differing in salinity resistance. Journal of Experimental Botany. 46: 1843–1852.
  23. Maas, E.V, and G.J, Hoffman. 1977. Crop salt tolerance: Current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.
  24. Mahajan, Sh., and N. Tuteja, 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444: 139-158.
  25. Momenpour, A., and A. Imani, 2018. Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera ) cultivars. Advances in Horticultural Science. 32 (2): 249-264.
  26. Momenpour, A., M. Dehestani Ardakani, M. Shirmardi, J. Gholamnezhad, F. Ahmadi, and Z. Jamaati. 2022. Salinity tolerance evaluation of twelve selected pomegranate (Punica granatum) genotypes to achieve tolerant cultivars and rootstocks. Journal of Horticultural and Postharvest Resarch. 5 (4): 363-378.
  27. Momenpour, A., A. Imani, D. Bakhshi, and E. Akbarpour. 2018. Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 International Journal of Fruit Science. 18 (4): 410-435.
  28. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25: 239-250.
  29. Munns, R., and M. Tester. 2008 Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651–681.
  30. Naeini, M. R., A. H. Khoshgoftarmanesh, and E. Fallahi. 2006. Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. Journal of Plant Nutrition, 29(10), 1835-1843
  31. Naeini, M. R., A.H. Khoshgoftarmanesh, H. Lessani, and E. Fallahi. 2005. Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. Journal of Plant Nutrition. 27 (8): 1319-1326.
  32. Okhovatian-Ardakani, A.R., M. Mehrabanian, F. Dehghani, and A. Akbarzadeh. 2010. Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment. 56 (4): 176-185.
  33. Rahemi, M., Sh. Nagafian, and V. Tavallaie. 2008. Growth and chemical composition of hybrid GF677 influenced by salinity levels of irrigation water. Plant Sciences. 7 (3): 309-313.
  34. Rodríguez, P., C. D. Mellisho, W. Conejero, Z. N. Cruz, M. F. Ortuno, A. Galindo, and A. Torrecillas, 2012. Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental and Experimental Botany, 77, 19-24.
  35. Sarwat, M., P. Ahmad, G. Nabi, and X. Hu. 2013. “Ca2+ signals: The versatile decoders of environmental cues”. Critical reviews in biotechnology, 33(1): 97-109.
  36. Shao, H. B. W. Y. Song, and L. Y. Chu. 2008. Advances of calcium signals involved in plant anti-drought. Comptes rendus biologies. 331 (8): 587- 596.
  37. Szczerba, M.W., DT. Britto, KD. Balkos, and H.J. Kronzucker. 2008. NH4+ stimulated and -inhibited components of K+ transport in rice (Oryza sativa ). Experimental Botany. 59: 3415–3423.
  38. Szczerba, M.W., D. T. Britto, and H. J. Kronzucker. 2009. K+ transport in plants: Physiology and molecular biology. Plant Physiology. 166: 447-466.
  39. Tavousi, M., F. Kaveh, A. Alizadeh, H. Babazadeh, and A. Tehranifar. 2016. Effect of salinity and deficit irrigation on quantity and quality of pomegranate (Punica granatum ). Iranian Journal of Irrigation and Drainage .4 (10): 499-507.
  40. Yamasaki, S., and L.C. Dillenburg. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilian Fisiologia Vegetal. 11: 69-75.