اثر سیلیسیم و اسید هیومیک بر برخی پاسخ‌های فیزیولوژیک فلفل دلمه‌ای (capsicum annuum L.) در سطوح مختلف شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 هیات علمی

3 بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 استادیار بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

تنش شوری، از مهم‌ترین عوامل محدود کننده‌ی رشد و توسعه‌ی گیاهان در مناطق خشک و نیمه‌خشک محسوب می‌شود. برای کشت گیاه در این مناطق می‌توان با بهره‌گیری از روش‌هایی از کاهش عملکرد جلوگیری کرد. یکی از این روش‌ها، استفاده از محرک‌های رشد می‌باشد. هدف از انجام این پژوهش، بررسی تاثیر مصرف ‌اسید هیومیک و سیلیسیم بر رشد گیاه فلفل‌ دلمه‌ای در سطوح مختلف شوری بود. این آزمایش در گلخانه تحقیقاتی دانشکده‌ی‌کشاورزی دانشگاه ‌شیراز در سال 1398 به انجام رسید. تیمار با آب شور در 4 سطح 0، 1/7، 3/4 و 5/1 دسی زیمنس برمتردر طی دوره رشد به گلدان‌ها افزوده شد و از تیمارهای ‌اسید هیومیک و سیلیسیم و کاربرد همزمان این دو برای کاهش اثرات شوری استفاده شد. اسید هیومیک در دو نوبت، هر نوبت 0/5گرم در کیلوگرم خاک به صورت خاکی اضافه گردید، سیلیسیم نیز به صورت محلول‌پاشی از منبع سیلیکات‌ پتاسیم با غلظت 1% اعمال شد. نتایج به­دست آمده از این مطالعه نشان داد که سطح 5/1 دسی زیمنس برمترشوری سبب کاهش 63% وزن خشک گیاه شد و درمیان تیمارهای بهبود دهنده، تنها اسید هیومیک توانست با 55% افزایش در زیست توده گیاه اثر معنی داری ایجاد کند. شوری همچنین سبب افزایش غلظت سدیم، کلسیم و منیزیم درگیاه شد، به این صورت که سطح شوری 5/1 دسی زیمنس برمترنسبت به شاهد، به ترتیب سبب افزایش 750%، 176% و 101% غلظت این عناصر شد. نتایج به دست آمده در خصوص تیمارهای بهبود دهنده نشان داد که کاربرد همزمان اسید هیومیک و سیلیسیم سبب افزایش 76% غلظت سدیم در گیاه و تیمار هیومیک سبب کاهش 28% غلظت کلسیم ریشه شد. با توجه به نتایج این تحقیق، تیمار اسید هیومیک بیشتر از تیمار سیلیسیم و نیز کاربرد همزمان اسید هیومیک و سیلیسیم توانست اثر­های شوری را بیشترکاهش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Silicon and Humic Acid on Some Physiological Responses in Bell Pepper at Different Salinity Levels

نویسندگان [English]

  • , Mohamad Kazem Dehghani 1
  • Reza Ghasemi-Fasaei 2
  • Sedigheh Safarzadeh Shirazi 3
  • Mohammad Etemadi 4
1 PhD candidate, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
2 faculty member
3 Department of Soil Science, Shiraz University, Shiraz, Iran
4 Assistant Professor, Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Salinity stress is one of the most critical causes restricting plant growth and development in arid and semi-arid regions. It is possible to use strategies to prevent plant yield loss in these areas. One of these strategies is the use of growth stimulants. The purpose of this study was to look into the influence of humic acid and silicon consumption on bell pepper growth under different salinity levels. This experiment was carried out in the research greenhouse of the School of Agriculture, Shiraz University, in 2019. Salinity treatment as saline water had conductivities of 0, 1.7, 3.4 and 5.1 dS.m-1 and were added to the plants during the growth, while humic acid, silicon, and the simultaneous application of these two were applied to reduce the effects of salinity. Humic acid was added twice, each time 0.5 grams per kilogram of soil, and silicon was applied as a foliar spray from a source of potassium silicate with a concentration of 1%. According to the results, level 5.1 dS.m-1 of salinity decreased 63% of shoot dry weight, compared to the control. Among the stimulant growth treatments, only humic acid showed a significant effect on increased plant biomass and caused 55% increase in the dry weight of shoots and roots. Salinity significantly increased the concentration of sodium, calcium, and magnesium in the plant, resulting in 750% sodium, 176% calcium, and 101% higher magnesium for 5.1 dS.m-1 level of salinity compared to the control. The findings of the treatments revealed that each treatment generated changes in several plant features, for example, the simultaneous application of humic acid and silicon caused 76% increase in sodium concentration in the plant, and humic acid treatments caused 28% decrease in root calcium concentration. According to the results of this research, humic acid improved more than silicon treatment, and the simultaneous application of humic acid and silicon could reduce the effects of salinity.

کلیدواژه‌ها [English]

  • Growth stimulants
  • Organic matter
  • Salinity stress
  • Water salinity
  1. Aktas, H., Abak, K., and Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266. https://doi.org/10.1016/j.scienta.2006.07.017
  2. Alam, M., Khan, M. A., Imtiaz, M., Khan, M. A., Naeem, M., Shah, S. A., ... & Khan, L. (2020). Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.). Gesunde Pflanzen, 72(1), 87-95.
  3. Almeida, D. M., Oliveira, M. M., and Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and molecular biology40, 326-345. https://doi.org/10.1590/1678-4685-gmb-2016-0106
  4. Andriesse, J. P. (1988). Nature and management of tropical peat soils (No. 59). Food and Agriculture Org.
  5. Archangi, A., Khodambashi, M., and Mohammadkhani, A. (2012). The effect of salt stress on morphological characteristics and Na+, K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum L.) under hydroponic culture. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 3(2), 33-41.
  6. Ashraf, M. F. M. R., and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  7. Ashraf, M. Y., Hussain, F., Akhter, J., Gul, A. T. T. I. Y. A., Ross, M., and Ebert, G. E. O. R. G. (2008). Effect of different sources and rates of nitrogen and supra optimal level of potassium fertilization on growth, yield and nutrient uptake by sugarcane grown under saline conditions. J. Bot, 40(4), 1521-1531.
  8. Ashraf, M., Mukhtar, N., Rehman, S. and Rha, E.S. 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant bishop’s weed (Ammi majus L). Photosynthetica, 42: 543-550. https://doi.org/10.1007/S11099-005-0011-4
  9. Bernstein, L., Francois, L. E., and Clark, R. A. (1974). Interactive effects of salinity and fertility on yields of grains and vegetables 1. Agronomy Journal, 66(3), 412-421. https://doi.org/10.2134/agronj1974.00021962006600030023x
  10. Bhatt, M. J., Patel, A. D., Bhatti, P. M., & Pandey, A. N. (2008). Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). Journal of Fruit and Ornamental Plant Research, 16(1), 383-401.
  11. Böhme, M., and Lua, H. (1996, September). Influence of mineral and organic treatments in the rhizosphere on the growth of tomato plants. In International Symposium Growing Media and Plant Nutrition in Horticulture 450 (pp. 161-168). https://doi.org/10.17660/ActaHortic.1997.450.18
  12. Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., and Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia horticulturae196, 15-27. https://doi.org/10.1016/j.scienta.2015.09.013
  13. Çimrin, K. M., Türkmen, Ö., Turan, M., and Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology9(36).
  14. Daur, I., and Bakhashwain, A. A. (2013). Effect of humic acid on growth and quality of maize fodder production.  J. Bot45(S1), 21-25.
  15. de Lacerda, C. F., Cambraia, J., Oliva, M. A., and Ruiz, H. A. (2005). Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54(1), 69-76. https://doi.org/10.1016/j.envexpbot.2004.06.004
  16. del Amor, F. M., and Cuadra-Crespo, P. (2012). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology, 39(1), 82-90. https://doi.org/10.1071/FP11173
  17. Delfine, S., Tognetti, R., Desiderio, E., and Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for sustainable Development25(2), 183-191. https://doi.org/10.1051/agro:2005017
  18. Dragišić Maksimović, J., Bogdanović, J., Maksimović, V., and Nikolic, M. (2007). Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science, 170(6), 739-744. https://doi.org/10.1002/jpln.200700101
  19. Epstein, E. (1999). Silicon. Annual review of plant biology, 50(1), 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  20. Ferreira-Silva, S. L., Silveira, J. A., Voigt, E. L., Soares, L. S., and Viégas, R. A. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20(1), 51-59.
  21. Ferreyra, R. E., Aljaro, A. U., Ruiz, R. S., Rojas, L. P., and Oster, J. D. (1997). Behavior of 42 crop species grown in saline soils with high boron concentrations. Agricultural Water Management, 34(2), 111-124. https://doi.org/10.1016/S0378-3774(97)00014-0
  22. Flam-Shepherd, R., Huynh, W. Q., Coskun, D., Hamam, A. M., Britto, D. T., and Kronzucker, H. J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany69(7), 1679-1692. https://doi.org/10.1093/jxb/erx460
  23. Gee, G. W., and Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43(5), 1004-1007. https://doi.org/10.2136/sssaj1979.03615995004300050038x
  24. Gu, H. H., Zhan, S. S., Wang, S. Z., Tang, Y. T., Chaney, R. L., Fang, X. H., ... and Qiu, R. L. (2012). Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant and soil, 350(1-2), 193-204. https://doi.org/10.1007/s11104-011-0894-8
  25. Hashemi, A., Abdolzadeh, A., and Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition56(2), 244-253. https://doi.org/10.1111/j.1747-0765.2009.00443.x
  26. Isaac, R. A., and Kerber, J. D. (1971). Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. Instrumental methods for analysis of soils and plant tissue, 17-37. https://doi.org/10.2136/1971.instrumentalmethods.c2
  27. Kaya, C., Akram, N. A., Ashraf, M., and Sonmez, O. (2018). Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications46(1), 67-78. https://doi.org/10.1556/0806.45.2017.064
  28. Khan, M. A., von Witzke-Ehbrecht, S., Maass, B. L., and Becker, H. C. (2009). Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genetic Resources and Crop Evolution, 56(1), 19-30. https://doi.org/10.1007/s10722-008-9338-6
  29. Liang, Y., Zhang, W., Chen, Q., Liu, Y., and Ding, R. (2006). Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany57(3), 212-219. http://dx.doi.org/10.1016/j.envexpbot.2005.05.012
  30. Lindsay, W. L., and Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  31. Lycoskoufis, I. H., Savvas, D., and Mavrogianopoulos, G. (2005). Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. Scientia Horticulturae, 106(2), 147-161. https://doi.org/10.1016/j.scienta.2005.02.022
  32. Maas, E. V., and Hoffman, G. J. (1977). Crop salt tolerance–current assessment. Journal of the irrigation and drainage division, 103(2), 115-134. https://doi.org/10.1061/JRCEA4.0001137
  33. Mashi, A., GALESHI, S., ZEYNALI, E., & NOURINIA, A. (2008). SALINITY EFFECT ON SEED YIELD AND YIELD COMPONENTS IN FOUR HULL-LESS BARLEY.
  34. Mazloomi, F., and Ronaghi, A. (2012). Effect of salinity and phosphorus on growth and chemical composition of two varieties of spinach. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 3(1), 85-96. .(inPersian)
  35. Meganid, A. S., Al-Zahrani, H. S., and El-Metwally, M. S. (2015). Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. International Journal of Innovative Research in Science, Engineering and Technology4(5), 2651-2660. http://dx.doi.org/10.15680/IJIRSET.2015.0405001
  36. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Rev. Plant Biol., 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  37. Munns, R., Guo, J., Passioura, J. B., and Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Functional Plant Biology, 27(10), 949-957. http://dx.doi.org/10.1071/PP99193
  38. Nelson, D. W. Sommer. LE 1996. Total Carbon, Organic Carbon and Organic Matter, Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science of America and American Society of Argonomy, SSSA, Page, 961. https://doi.org/10.2136/sssabookser5.3.c34
  39. Oron, G., DeMalach, Y., Gillerman, L., David, I., and Rao, V. P. (1999). Improved saline-water use under subsurface drip irrigation. Agricultural Water Management, 39(1), 19-33. https://doi.org/10.1016/S0378-3774(98)00088-2
  40. Paksoy, M., Türkmen, Ö., and Dursun, A. (2010). Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. African Journal of Biotechnology9(33).
  41. Parvaiz, M. (2014). Response of Maize to salt stress a critical review. International Journal of Healthcare Sciences (IJHS), 1(1), 13-25.
  42. Rohanipoor, A., Norouzi, M., Moezzi, A., and Hassibi, P. (2013). Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological and Environmental Sciences7(20).
  43. Shahbaz, M., and Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical reviews in plant sciences32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544
  44. Singh, A., Sharma, P.C., Meena, M.D., Kumar, A., Mishra, A.K., Kumar, P., Chaudhari, S.K and Sharma, D.K. 2016. Effect of salinity on gas exchange parameters and ionic relations in bael, Aegle marmelos https://doi.org/10.5958/0974-0112.2016.00017.7
  45. SOLEYMANI, M. R., KAFI, M., ZIAEI, M., & SHABAHANG, J. (2008). EFFECT OF LIMITED IRRIGATION WITH SALINE WATER ON FORAGE OF TWO LOCAL POPULATIONS OF KOCHIA SCOPARIA L. SCHRAD.
  46. Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., and Liang, Y. (2011). The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344(1-2), 319-333. https://doi.org/10.1007/s11104-011-0749-3
  47. Sumner, M. E., and Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1201-1229. https://doi.org/10.2136/sssabookser5.3.c40
  48. Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
  49. Tunçtürk, M., Tunçtürk, R., Yildirim, B., and Çiftçi, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10), 1827-1832. https://doi.org/10.4314/AJB.V10I10
  50. Türkmen, Ö., Dursun, A., Turan, M., and Erdinç, Ç. (2004). Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 54(3), 168-174. https://doi.org/10.1080/09064710310022014
  51. Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in enzymology428, 419-438. https://doi.org/10.1016/s0076-6879(07)28024-3
  52. Vojodi, M. L., Hassanpour, A. M., and Valizadeh, K. R. (2018). Effect of NaCl Salinity and ZnSO4 Foliar Application on Yield and Some Physiological Traits of Tagetes erecta L. (In Persian with English abstract) https://doi.org/10.22055/ppd.2020.31067.1825
  53. Wang, D., Shannon, M. C., and Grieve, C. M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. https://doi.org/10.1016/S0378-4290(00)00154-4
  54. Wang, X. S., and Han, J. G. (2007). Effects of NaCl and silicon onion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Science and Plant Nutrition53(3), 278-285. https://doi.org/10.1111/j.1747-0765.2007.00135.x
  55. Watanabe, F. S., and Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x
  56. Winfield, M. O., Lu, C., Wilson, I. D., Coghill, J. A., and Edwards, K. J. (2010). Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnology Journal, 8(7), 749-771. https://doi.org/10.1111/j.1467-7652.2010.00536.x
  57. Yin, L., Wang, S., Li, J., Tanaka, K., and Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta physiologiae plantarum35(11), 3099-3107. http://dx.doi.org/10.1007/s11738-013-1343-5
  58. Yiu, J. C., Tseng, M. J., Liu, C. W., and Kuo, C. T. (2012). Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Scientia horticulturae, 134, 200-209.
  59. Zandonadi, D. B., Canellas, L. P., and Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225(6), 1583-1595. https://doi.org/10.1007/s00425-006-0454-2
  60. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual review of plant biology53, 247. https://doi.org/10.1146/annurev.arplant.53.091401.143329
  61. Zhu, Y., and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472. https://doi.org/10.1007/s13593-013-0194-1
  62. Zhu, Z., Wei, G., Li, J., Qian, Q., and Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science167(3), 527-533. https://doi.org/10.1016/j.plantsci.2004.04.020