تعیین سهم نسبی کاربری اراضی در تولید رسوب با استفاده از شاخص‌های هوازدگی در حوضه آبخیز چهل چای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران.گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید

2 گروه جغرافیای طبیعی، دانشکده دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران،

3 گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی ، تهران، ایران

10.22092/ijsr.2024.366332.752

چکیده

مسأله­ی مهم و قابل توجه در پژوهشهای کاربردی برای مدیریت حوزههای آبخیز، آگاهی از چگونگی فرآیند تولید رسوب حوضه­های آبخیز است. در دو دهه­ی اخیر، منشأیابی رسوب به عنوان یک روش مناسب برای تعیین منابع رسوب استفاده می­شود. هدف از این پژوهش بررسی سهم انواع منابع سطحی(جنگل، مرتع، کشاورزی و باغ) و زیرسطحی(کناره آبراهه) در تولید رسوب با استفاده از تکنیک منشأیابی رسوب با کاربرد شاخص های هوازدگی در حوزه آبخیز چهل­چای استان گلستان بود. برای این منظور، در مرحله­ی اول، نمونه رسوب معلق طی هشت رخداد سیلاب در بازه­ی زمانی بهمن 1399 تا فروردین 1400 برداشته شد. شاخص های هوازدگی بر اساس غلظت ردیاب­های ژئوشیمیایی محاسبه شد. پس از آزمونهای دامنه، کروسکال-والیس و تحلیل تشخیص،  شاخص تغییر شیمیایی (CPA)، نسبت آ ال کا(ALK)، شاخص منیزیوم (MgIndex)، شاخص بی ای1(ba1) و شاخص کالمگ (CALMAG Index) که بالاترین درصد توان تفکیک­پذیری را داشتند برای تعیین سهم منابع تولید رسوب انتخاب شدند.  نتایج اجرای مدل منشأیابی در حوضه آبخیز چهل چای نشان داد که در بین منابع سطحی و زیرسطحی، کاربری کشاورزی، 6/88% کل رسوب را تولید می­کند. سهم سایر کاربری­ها به ترتیب مرتع(1/4%)، باغ(3/2%) و آبراهه 5% بود. با آگاهی از سهم بالای زمین های کشاورزی در تولید رسوب، طراحی و اجرای عملیات حفاظت خاک  متناسب با موقعیت منطقه، امری ضروری به شمار می­آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Relative Contribution of Land Use in Sediment Yield by Using Weathering Indices in Chehl Chay Watershed

نویسندگان [English]

  • Saeedeh Jalali 1
  • Kazem Nosrati 2
  • Shahram Bahrami 3
1 Department of Physical Geography, Faculty of Earth sceince Science, University of Shaheid Beheshti, Tehran, Iran.
2 Department of Physical Geography, Earth science Science, University of Shaheid Beheshti, Tehran
3 Department of Physical Geography, Earth sceince Science, University of Shaheid Beheshti, Tehran, Iran.
چکیده [English]

A significant issue in applied research for the management of watersheds is to know the integrated sediment yield process in watershed. In the recent decades, sediment fingerprinting method was proven as one of the key methods for determining contribution of sediment proportion. This study's purpose was to determine the relative source contribution of surface (forest, pasture, agriculture and gardening) and sub-surface (bank erosion) in sediment yield by using weathering indices in Chehel-Chaye Catchment, Golestan Province, Iran. In eight flood events, suspended sediment sampling was done in March to April 2021.  Thirty-six weathering indices were calculated. After Bracket, Kruskal-Wallis, and Discernment Function Analysis, CPA,ALK, MgIndex, ba1, CALMAG Index  had the highest discernment percentage in all of the tracers. Based on Bayesian mixing model, the highest proportion of suspended sediment was produced by agricultural land (88/6%), followed by pasture (4/1%), forest (2/3%), and bank erosion(5%) of the suspended sediment. Thus, knowing the high contribution of agriculture in sediment yield, it is necessary to design and implement soil conservation operations according to the location of the watershed.

کلیدواژه‌ها [English]

  • Sediment tracing
  • Soil conservation
  • Soil erosion
  • Geo-chemical tracers
  1. حکیم‌خانی، ش. 1389. ارزیابی اهمیت نسبی انواع فرسایش در تولید رسوب (بررسی موردی: حوزه قره آقاج، ماکو). نشریه مرتع و آبخیزداری، مجله منابع طبیعی ایران، 63 (1)، صفحات 13-27.
  2. صادقی، س.ح.ر، نجفی.س، منشایابی رسوبات آبی در حوزه های آبخیز مفاهیم، روش­ها و فناوری های نوین. 1393. دانشگاه تربیت مدرس، سازمان جهاد دانشگاهی.
  3. Baumann, F. Schmidt, K., Dörfer, C., He, J.-S., Scholten, T., & Kühn, P. 2014. Pedogenesis, permafrost, substrate and topography: Plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan Plateau. Geoderma, 226, 300-316.
  4. Birkeland, P., Shroba, R., Burns, S., Price, A., & Tonkin, P. 2003. Integrating soils and geomorphology in mountains—an example from the Front Range of Colorado. Geomorphology, 55(1-4), 329-344.
  5. Blake, W. H., Boeckx, P., Stock, B. C., Smith, H. G., Bodé, S., Upadhayay, H. R., . . . Lizaga, I. 2018. A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment. Scientific reports, 8(1), 13073.
  6. Brown, D. J., Helmke, P. A., & Clayton, M. K. 2003. Robust geochemical indices for redox and weathering on a granitic laterite landscape in Central Uganda. Geochimica et Cosmochimica Acta, 67(15), 2711-2723.
  7. Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., & Marković, S. 2011. An evaluation of geochemical weathering indices in loess–paleosol studies. Quaternary International, 240(1-2), 12-21.
  8. Carter, J., Owens, P. N., Walling, D. E., & Leeks, G. J. 2003. Fingerprinting suspended sediment sources in a large urban river system. Science of the total environment, 314, 513-534.
  9. Cashman, M. J., Gellis, A., Sanisaca, L. G., Noe, G. B., Cogliandro, V., & Baker, A. 2018. Bank‐derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed. River Research and Applications, 34(8), 1032-1044.
  10. Chittleborough, D. 1991. Indices of weathering for soils and palaeosols formed on silicate rocks. Australian Journal of Earth Sciences, 38(1), 115-120.
  11. Collins, A., & Walling, D. 2007. Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology, 88(1-2), 120-138.
  12. Collins, A. L., Walling, D. E., & Leeks, G. J. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geografiska Annaler: Series A, Physical Geography, 79(4), 239-254.
  13. Colman, R. F. 1983 . Affinity labeling of purine nucleotide sites in proteins. Annual review of biochemistry, 52(1), 67-91.
  14. Cullers, R. L. 2002 . Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical geology, 191(4), 305-327.
  15. Darmody, R., Thorn, C., & Allen, C. 2005 . Chemical weathering and boulder mantles, Kärkevagge, Swedish Lapland. Geomorphology, 67(1-2), 159-170.
  16. De Moraes, J. M., Schuler, A. E., Dunne, T., Figueiredo, R. d. O., & Victoria, R. L. 2006 . Water storage and runoff processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes: An International Journal, 20(12), 2509-2526.
  17. Das, A., Remesan, R., Collins, A. L., & Gupta, A. K. 2023 . The spatio-temporal dynamics of suspended sediment sources based on a novel indexing approach combining Bayesian geochemical fingerprinting with physically-based modelling. Journal of Environmental Management, 345, 118649.
  18. Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. 1995 . Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924.
  19. Garzon-Garcia, A., Laceby, J.P., Olley, J.M. and Bunn, S.E., 2017. Differentiating the sources of fine sediment, organic matter and nitrogen in a subtropical Australian catchment. Science of the total environment, 575, pp.1384-1394.
  20. Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., & Villa, I. M. 2014 . Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical geology, 366, 61-74.
  21. Gellis, A., & Gorman Sanisaca, L. 2018 . Sediment fingerprinting to delineate sources of sediment in the agricultural and forested Smith Creek Watershed, Virginia, USA. JAWRA Journal of the American Water Resources Association, 54(6), 1197-1221.
  22. Guo, Y., Yang, S., Su, N., Li, C., Yin, P., & Wang, Z. 2018 . Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta, 227, 48-63.
  23. Haddadchi, A., Ryder, D. S., Evrard, O., & Olley, J. 2013 . Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. International Journal of Sediment Research, 28(4), 560-578. doi:https://doi.org/10.1016/S1001-6279(14)60013-5
  24. Harnois, L., & Moore, J. M. 1988 . Geochemistry and origin of the Ore Chimney Formation, a transported paleoregolith in the Grenville Province of southeastern Ontario, Canada. Chemical geology, 69(3-4), 267-289.
  25. Hencher, S. 2004 . Weathering and erosion processes in rock–implications for geotechnical engineering. Paper presented at the Proceedings symposium on Hong Kong soils and rocks.
  26. Hughes, A. O., Olley, J. M., Croke, J. C., & McKergow, L. A. 2009 . Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology, 104(3-4), 262-275.
  27. Jayawardena, U. d. S., & Izawa, E. 1994 . A new chemical index of weathering for metamorphic silicate rocks in tropical regions: A study from Sri Lanka. Engineering Geology, 36(3-4), 303-310.
  28. Jones, J., Duerdoth, C., Collins, A., Naden, P., & Sear, D. 2014 . Interactions between diatoms and fine sediment. Hydrological processes, 28(3), 1226-1237.
  29. Koiter, A., Owens, P., Petticrew, E., & Lobb, D. 2013 . The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Science Reviews, 125, 24-42.
  30. Lamba, J., Karthikeyan, K., Thompson, A. M., Malhotra, K., Huisman, N. L., Panuska, J., & Peaslee, G. 2019 . Using Atmospheric Fallout Radionuclides 137Cs and 210Pbxs to Identify Sources of Suspended Sediment in an Agricultural Watershed. Transactions of the ASABE, 62(2), 529-538.
  31. Li, C., & Yang, S. 2010 . Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? American Journal of Science, 310(2), 111-127.
  32. Li, S.-L., Liu, C.-Q., Li, J., Lang, Y.-C., Ding, H., & Li, L. 2010 . Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints. Chemical geology, 277(3-4), 301-309.
  33. Li, W., Qian, H., Xu, P., Hou, K., Zhang, Q., Chen, Y., . . . Ren, W. 2023 . Tracing sediment provenance in the Yellow River, China: Insights from weathering, recycling, and rock compositions. Catena, 220, 106727.
  34. Malhotra, H., Vandana, Sharma, S., & Pandey, R. 2018 . Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance, 171-190.
  35. Malhotra, K., Lamba, J., Srivastava, P., & Shepherd, S. 2018 . Fingerprinting suspended sediment sources in an urbanized watershed. Water, 10(11), 1573.
  36. Maynard, J. 1992 . Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology, 100(3), 279-289.
  37. McLemore, V. T., Dunbar, N., Tachie-Menson, S., & Donahue, K. 2010). The Effect of Weathering on the Acid-Producing Potential of the Goathill North Rock Pile, Questa mine, NM. CRC Press, Taylor and Francis Group, London, Tailings and Mine Waste, 10, 213-227.
  38. Motha, J., Wallbrink, P., Hairsine, P., & Grayson, R. (2003 . Determining the sources of suspended sediment in a forested catchment in southeastern Australia. Water resources research, 39(3).
  39. Nesbitt, H., & Young, G. M. 1982 . Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature, 299(5885), 715-717.
  40. Ng, C. W. W., Guan, P., & Shang, Y. 2001 . Weathering mechanisms and indices of the igneous rocks of Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 34(2), 133-151.
  41. Nordt, L., & Driese, S. 2010 . New weathering index improves paleorainfall estimates from Vertisols. Geology, 38(5), 407-410.
  42. Nosrati, K., Haddadchi, A., Collins, A. L., Jalali, S., & Zare, M. R. 2018. Tracing sediment sources in a mountainous forest catchment under road construction in northern Iran: comparison of Bayesian and frequentist approaches. Environmental Science and Pollution Research, 25(31), 30979-30997. ‏
  43. Nosrati, K., & Collins, A. L. 2019 . A soil quality index for evaluation of degradation under land use and soil erosion categories in a small mountainous catchment, Iran. Journal of Mountain Science, 16(11), 2577-2590.
  44. Nosrati, K., Collins, A. L., & Fiener, P. 2020 . Using catchment characteristics to model seasonality of dissolved organic carbon fluxes in semi-arid mountainous headwaters. Environmental Monitoring and Assessment, 192(11), 674.
  45. Nosrati, K., Collins, A. L., & Madankan, M. 2018 . Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model. Catena, 164, 32-43.
  46. Raigani ZM, Nosrati K, Collins AL. . 2019.Fingerprinting sub-basin spatial sediment sources in a large Iranian catchment under dry-land cultivation and rangeland farming: Combining geochemical tracers and weathering indices. Journal of Hydrology: Regional Studies;24:100613.
  47. Owens, P. N. 2020 . Soil erosion and sediment dynamics in the Anthropocene: a review of human impacts during a period of rapid global environmental change. Journal of Soils and Sediments, 20, 4115-4143.
  48. Palazón, L., & Navas, A. 2017 . Variability in source sediment contributions by applying different statistic test for a Pyrenean catchment. Journal of Environmental Management, 194, 42-53.
  49. Piché, M., & Jébrak, M. 2004 . Normative minerals and alteration indices developed for mineral exploration. Journal of Geochemical Exploration, 82(1-3), 59-77.
  50. Price, J. R., & Velbel, M. A. 2003 . Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical geology, 202(3-4), 397-416.
  51. Pulley, S., Foster, I., & Antunes, P. 2015 . The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology, 228, 303-319.
  52. Robinet, J., von Hebel, C., Govers, G., van der Kruk, J., Minella, J. P., Schlesner, A., . . . Vanderborght, J. 2018 . Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry. Geoderma, 314, 160-174.

 

  1. Ruxton, B. P. 1968 . Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76(5), 518-527.
  2. Sandaruwan, C., Adikaram, M., Madugalla, N., Pitawala, A., Ishiga, H., & Udagedara, T. 2022 . Mineralogy and geochemistry of beach sediments associated with the Precambrian crystalline rocks (Vijayan Complex) of Sri Lanka; perspective for heavy minerals. Regional Studies in Marine Science, 55, 102579.
  3. Sadeghi SH, Singh JK. Derivation of Flood Hydrographs for Ungauged Upstream Subwatersheds Using a Main Outlet Hydrograph. Journal of Hydrologic Engineering. 2010;15(12):1059-69.
  4. Shao, J., Yang, S., & Li, C. 2012 . Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sedimentary Geology, 265, 110-120.
  5. Salemi, L. F., Groppo, J. D., Trevisan, R., de Moraes, J. M., de Barros Ferraz, S. F., Villani, J. P., . . . Martinelli, L. A. 2013 . Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100-109.
  6. Tiecher, T., Minella, J. P. G., Evrard, O., Caner, L., Merten, G. H., Capoane, V., . . . dos Santos, D. R. (2018 . Fingerprinting sediment sources in a large agricultural catchment under no‐tillage in Southern Brazil (Conceição River). Land degradation & development, 29(4), 939-951.
  7. von Eynatten, H. 2004 . Statistical modelling of compositional trends in sediments. Sedimentary Geology, 171(1-4), 79-89
  8. Walling, D. E. 2013 . The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils and Sediments, 13, 1658-1675.
  9. Wang, N., Jiao, J., Bai, L., Zhang, Y., Chen, Y., Tang, B., . . . Wang, H. 2020 . Magnitude of soil erosion in small catchments with different land use patterns under an extreme rainstorm event over the Northern Loess Plateau, China. Catena, 195, 104780.
  10. Wilkes, M. A., Gittins, J. R., Mathers, K. L., Mason, R., Casas‐Mulet, R., Vanzo, D., . . . Gurnell, A. 2019 . Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdisciplinary Reviews: Water, 6(2), e1331.
  11. Rowell, DL.1994. Soil science methods and Application. part7. Measurement of the composition of soil solution. 146p