Land Suitability Evaluation with Fuzzy Simulation and Fuzzy Analytic Hierarchy Process for Irrigated Wheat

Authors

Abstract

Performance of proper method of land suitability for determination of land classes and subclasses for wheat production is very important. This research aimed to determine the quantitative impact of land characteristics on irrigated wheat production, using the theory of fuzzy logic and fuzzy analytic hierarchy process (FAHP) approach. The theory was applied to a land suitability assessment for irrigated wheat in Gotvand, Khuzestan province, southwest of Iran. The methodology was tested by comparing the observed yield and land indices calculated by fuzzy simulation and FAHP approach. Based on the result regression coefficient for fuzzy simulation and FAHP was, respectively, 0.82 and 0.27 and the corresponding standard errors of fit were 252 and 1263 kg/ha. Therefore, the model based on fuzzy simulation had higher accuracy and less error than FAHP. Therefore, fuzzy simulation model is the best method in this research and can be proposed for future study in land suitability evaluation studies.

Keywords


  1. امیریان، ع. 1990. مدل سازی مکانی تناسب اراضی با استفاده از تئوری مجموعه­های فازی و تکنیک‌های زمین آماری. رساله دکتری. پردیس کشاورزی و منابع طبیعی دانشگاه تهران. 283 ص.
  2. سهرابی، اکبر. 1382. طبقه­بندی کیفی و کمی تناسب اراضی برای چغندرقند بر پایه نقشه­برداری تفصیلی خاک در دشت سیلاخور لرستان. پایان نامه دکتری، دانشگاه تربیت مدرس.
  3. سیدجلالی، س. ع.، سرمدیان، ف.، شرفا و محمد اسماعیل، ز. 1392. ارزیابی تناسب اراضی برای گندم آبی با استفاده از فرآیند تحلیل سلسله مراتبی فازی. سیزدهمین کنگره علوم خاک. دانشگاه شهید چمران. اهواز.
  4. قدسی پور ح.، 1385. فرآیند تحلیل سلسله مراتبی (AHP)، دانشگاه امیرکبیر، 220 صفحه.
  5. محمدی، ج و ج. گیوی. 1380. ارزیابی تناسب اراضی برای گندم آبی در منطقه فلاورجان (اصفهان) با استفاده از نظریه مجموعه­های فازی. علوم و فنون کشاورزی، جلد پنجم، شماره اول. صفحه 116-103.
  6. Joss, B.N., J. Hall, D.M. Sidders and T.J. Kedy. 2008. Fuzzy-logic modeling of land suitability for hybrid poplar across the prairie province of Canada. Environ Monit Assess. 141: 79-96.
  7. Keshavarzi, A; F. Sarmadian,; A. Heidari, and M. Omid. 2010. Land Suitability Evaluation Using Fuzzy Continuous Classification (A Case Study: Ziaran Region). Modern Applied Science, 4( 7). 72-81.
  8. Khiddir, S. M. 1986. A statistical approach in the use of parametric systems applied to the FAO framwork for land evaluation. Ph. D. Thesis, State university of Ghent, Belgium.
  9. Mokarram M, Rangzan K, Moezzi A, Baninemehc J (2010). Land suitability evaluation for wheat cultivation by fuzzy theory approach as compared with parametric method. The international archives of the photogrametry. Rem Aen Spa Inf Sci. 38: 1440-145.
  10. Prakash, T.N. 2003. Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. MSc Thesis, ITC, the Netherland.
  11. Saaty, T.L. 1990. An Exposition of the AHP in Reply to the Paper 'Remarks on the Analytic Hierarchy Process',
  12. Saaty, T.L. and Vargas, L.G. 1991. Prediction, Projection and Forecasting, Boston: Kluwer Academic. Management Science, 36: 259-268.
  13. Sanchez Moreno,  JF  ,(2007).  Applicability  of  knowledge  based   and   Fuzzy   theory-oriented   approach  to  land suitability  for  upland  rice  and  rubber,  as  compared  to  the farmers’ perception.  International    Institute  for  GeoInformation  Science  and  Earth  Observation,  Enschede, the Netherlands. 133 pp.
  14. Sivanandam, S. N. Deepa, S. N. 2007. Sumathi, S. Introduction to Fuzzy Logic using MATLAB.Springer-Verlag: NewYork. Soil Sci. Soc. Am. Journal. 65: 1547–1558.
  15. Sys, C; E. Van Ranst. & J. Debaveye. 1991. Land evaluation part I, Principle in land evaluation and crop production calculation. General Administration for Development Cooperation, Brussels.274 pp.
  16. VanRanst, E., H. Tang, R. Groenamans, and S. Sinthurahat. 1996. Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma, 70: 1-19.
  17. Zadeh, L.A. 1965. Fuzzy sets. Information and Control. 8: 338–353.