Estimation of saturated hydraulic conductivity (Ks) is important as an essential parameter in soil physics. Up to now, a variety of different models have been developed for estimation of Ks which include artificial intelligence (AI) models recently developed for this purpose. Although ROSETTA as an old computer program could simulate soil hydraulic parameter, Fuzzy Inference System (FIS) might be useful to estimate this parameter since it is less time-consuming with lower complexity and cost. A new challenging issue which has received less attention is the uncertainty analysis of the results due to different dataset and different membership functions. In this study, dataset of 151 samples collected from arable land around Bojnourd City in north Khorasan province were analyzed based on stepwise regression and bulk and particle densities determined as the most important inputs to FIS. Monte Carlo simulations of 1000 different samples were achieved and results derived from training period with some available membership functions in Matlab. Totally, three performance criteria showed reliable estimates of hydraulic conductivity for low and high values and, specifically, the best result was obtained from Gaussian membership function.
پوررضا بیلندی، م و خاشعی سیوکی، ع 1394. تحلیل عدم قطعیت خروجی مدل شبکه عصبی در شبیهسازی هدایت هیدرولیکی اشباع خاک. نشریه علمی پژوهشی آبیاری و زهکشی ایران . شماره 4 جلد 9 آبان 94 ص 655-664
جلالی ، و ، ع خاشعی سیوکی و م همایی 1392. مقایسه روش های زمین آماری با روش غیرپارامتریک-k نزدیک ترین همسایه برای برآورد هدایت هیدرولیکی اشباع خاک. مجله علمی پژوهشی حفاظت آب و خاک گرگان.20(5). 147-162.
ریاحی مدوار، ح، خاشعی سیوکی ، ع و سیفی اکرم. 1395. تحلیل دقت و عدم قطعیت شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران مبتنی بر داده های اقلیمی در استان خراسان جنوبی. مجله علمی پژوهشی فناوری و زراعت زعفران دانشگاه تربت حیدریه. پذیرش
Aqil, M., Kita, I., Yano, A., and Nishiyama, S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, 337, 22-34.
Biggar, J. W. and Nielsen D. R. 1976. The spatial variability of the leaching characteristics of the field soil. Water Resource Research. 12: 78-84.
Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science. 9:177–213.
Camacho, J . Martin, J , WilliamMc A , Hugo R, PeterSuscy, S. 2014. Uncertainty analysis of estuarine hydrodynamic models: an evaluation of input data uncertainty in the weeks bay estuary, Alabama. Applied Ocean Research 47 138–153
Dybowski, R. 1997 . Assigning confidence intervals to neural network predictions." Technical report, Division of Infection (St Thomas’ Hospital), King’s CollegeLondon.
Eckhardt, K., Breuer, L., and Frede, H. G. (2003). "Parameter uncertainty and the significance of simulated land use change effects." Journal of Hydrology, 273, 164-176.
Khashei-siuki. A and Sarbazi. (2015).Evolution of ANFIS, ANN and geostatistic models to spatial distribution of groundwater quality ( case study: Mashhad plain in Iran). Arabian Journal of Geosciences. Springer. 8:903–912
Jung W. K., Kitchen N. R., Sudduth K. A., and Anderson S. H. 2006. Spatial Characteristics of Claypan Soil Properties in an Agricultural Field. Soil Science Society of America Journal. 70:1387–1397.
Marce, R., Comerma, M., García, J. C., and Armengol, J. 2004. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography: Methods, 2, 342-355.
Miller, E. E., and Miller R. D. Physical theory for capillary flow phenomena. Journal of Applied Physics. 27:324–332.
Riahi-Madvar, H., Ayyoubzadeh, S. A. Namin ,M. M. Seifi A. 2011.Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows. J. Hydrol. Hydromech., 59, 2011, 3, 171–183 .
Riahi-Madvar, H., Ayyoubzadeh, S.A. 2010. Uncertainty analysis of ANN and ANFIS techniques in comparison with regime equations for determining regime channel geometry. Fifth International Conference on Water Resources and Environment Research 5th - 7th of July 2010 at Quebec City, Canada.
Tayfur, G., Nadiri, A. A., and Moghaddam, A. A. 2014 Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management, 28(4), 1173-1184.
Tibshirani, R. (1994). A Comparison of Some Error Estimates for Neural Network Models. Technical Working Paper No. 94-10, Department of Statistics, University of Toronto.
Yao, R. J., Yang, J. S., Wu, D. H., Li, F. R., Gao, P., and Wang, X. P. 2015 Evaluation of pedotransfer functions for estimating saturated hydraulic conductivity in coastal salt-affected mud farmland. Journal of Soils and Sediments, 1-15.
Khashei-siuki, A., & Pourreza bilondi, M. (2016). Uncertainty Analysis of Fuzzy Inference System to Predict Saturated Soil Hydraulic Conductivity. Iranian Journal of Soil Research, 30(3), 305-317. doi: 10.22092/ijsr.2016.107367
MLA
A Khashei-siuki; M. Pourreza bilondi. "Uncertainty Analysis of Fuzzy Inference System to Predict Saturated Soil Hydraulic Conductivity". Iranian Journal of Soil Research, 30, 3, 2016, 305-317. doi: 10.22092/ijsr.2016.107367
HARVARD
Khashei-siuki, A., Pourreza bilondi, M. (2016). 'Uncertainty Analysis of Fuzzy Inference System to Predict Saturated Soil Hydraulic Conductivity', Iranian Journal of Soil Research, 30(3), pp. 305-317. doi: 10.22092/ijsr.2016.107367
VANCOUVER
Khashei-siuki, A., Pourreza bilondi, M. Uncertainty Analysis of Fuzzy Inference System to Predict Saturated Soil Hydraulic Conductivity. Iranian Journal of Soil Research, 2016; 30(3): 305-317. doi: 10.22092/ijsr.2016.107367