Prediction of Cation Exchange Capacity in the Soils of Gilan Province Using Intelligent Models

Authors

1 Former MSc Student of Soil Sciences, Shahrood University of Technology Shahrood, Iran

2 Associate Professor in Soil and Environmental Pollution Water and Soil Department Faculty of Agriculture Shahrood University of Technology Shahrood, Iran

3 Agriculture Shahrood University of Technology Shahrood, Iran

4 Associate Professor in Water and Soil Department Faculty of Agriculture Shahrood University of Technology Shahrood, Iran

Abstract

Cation exchange capacity (CEC) is one of the most important characteristics of soils in relation to nutrient elements and water storage in the soil, as well as soil pollution management. CEC measurement is difficult and time-consuming. So, estimating it by use of soil readily available properties is good. In this study, intelligent model was employed and the parameters used were the physical and chemical properties of the soil such as particle size distribution, organic carbon, clay and sands content, phosphorus, nitrogen, PH and EC. The methods of artificial neural network (MLP), (RBF) and Adaptive-network-based fuzzy inference system (ANFIS) were used to assess CEC. Then, the ability of this method to predict CEC was investigated by using 250 soil samples in two groups: 80 percent for training and 20 percent for validation. To determine the accuracy of the model prediction of CEC, statistical indices including Mean Absolute Error (MAE), the coefficient of determination (R2), and Root Mean Square error (RMSE) were evaluated. The results showed higher efficiency of artificial neural network MLP compared to the other models with the values of MAE, RMSE, R2equal to 1.79, 2.54, and 0.8, respectively1. The sensitivity analysis performed on the input data to the model showed that organic carbon and the pH had the highest and lowest correlation with the cation exchange capacity. The results show that use of artificial neural network to estimate the soil cation exchange capacity is possible and can be used to facilitate the measurement, lower economic cost, and save time.

Keywords


  1. ارشد ر.ا، صیاد ، غ.ع مظلوم م.، و جعفری نژاد ا.ر. ، 1388 . تخمین نفوذ آب با شبکه عصبی مصنوعی. سومین کنفرانس آبیاری و مدیریت آب.اهواز. ایران.
  2. دهقانی ا..عسگری ا، م. و. مساعدی ا ، 1388 . مقایسه سه روش شبکه عصبی مصنوعی، سیستم استنتاجی فازی- عصبی تطبیقی و زمین‌آمار در میان یابی سطح آب زیرزمینی(مطالعه موردی دشت قزوین) .مجله علوم کشاورزی و منابع طبیعی 16-536-517
  3. سرمدیان ف، تقی زاده ر.ا ، عسگری ح.م ، و اکبر زاده ع ، 1388 . مقایسه روش‌های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش‌بینی. برخی خصوصیات خاک مطالعه موردی استان گلستان. مجله تحقیقات آب‌وخاک ایران 220:41-211
  4. صیادی ح، اولاد غفاری ا.ف، فعالیان ا، و صدرالدینی ع.ا ، 1388 . مقایسه عملکردهای شبکه‌های عصبی در برآورد تبخیر و تعرق MLP و RBF گیاه مرجع. مجله دانش آب‌وخاک 12:19-1
  5. کاشی ح، قربانی ه، امامقلی زاده ص ، هاشمی ع.ا ،1392. تخمین ظرفیت تبادل کاتیونی در دو خاک بکر و کشاورزی توسط شبکه عصبی مصنوعی و رگرسیون خطی . نشریه آب‌وخاک(علوم و صنایع کشاورزی). 27-484-472
  6. مهاجر ر،. صالحی م ه، و بیگی هرچگانی ح ، 1388. تخمین ظرفیت تبادل کاتیونی خاک با استفاده از رگرسیون و شبکه عصبی و اثر تفکیک داده­ها بر دقت و صحت توابع. علوم و فنون کشاورزی و منابع طبیعی علوم اب و خاک، 49. 83-97.
  7. مهربانیان م، تقی زاده مهرجردی ر ، دهقانی ف، 1388. بررسی کارایی توابع انتقالی جهت تخمین ظرفیت تبادل کاتیونی خاک‌های آهکی و گچی استان یزد. پژوهش‌های حفاظت آب ‌وخاک.7-1
    1. Amini, M., K.C. Abbaspour., H. Khademi., N. Fathianpour., M. Afyuni., and R Schulin. 2005.Neural network models to predict cation exchange capacity in arid regions of Iran. European Journal of Soil Science, 53, 748–757.
    2. Azamathulla, M., C.K. Chang., A.A. Ghani, J. Ariffin., N.A. Zakaria., and Z. Abu Hasan., 2009. An ANFIS-based approach for predicting the bed load for moderately sized rivers. Jornal of Hydrog and environmental .Res 3 35-44.
    3. Bell, M.A., H. Van Keulen., 1995. Soil pedotransfer functions for four Mexican soils.Soil Sci. Soc. Am. J. 59, 865–871.
    4. Breeuwsma, A., J.H.M. Wosten., J.J. Vleeshouwer., Van Slobbe, A.M., and Bouma J., 1986. Derivation of land qualitiesto assess environmental problems from soil surveys. Soil. Sci. Am. J., 50:186-190. by calcareous soils of Syria.Commun. Soil Sci. Plant Annal. 24: 197-210.
    5.  Bremner J.M. and C.S Mulvaney. 1982. Nitrogen total. In: Page, A.L., et al. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. ASA, Madison, WI, pp, 595 624.     
    6. Bouyoucos, G.J. 1962. Hydrometer method  improved for making particle size analysis of soils. Agron, 56: 464-465
    7. Chapman.H.D.1965.Cation exchange capabilty.P. 891-901 .In C.A.Black , et al.(eds.) Methods of soil analysis.
    8. Damangir H,2001 “Dynamic Training of ANN for Its Application in Real-Time Flood Forecasting”, M.S. Thesis, Shiraz University, Shiraz, Iran.
    9. Ghorbani H, H. Kashi, N. Hafezi Moghadas,S.Emamgholizadeh,2015, Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran‏. Communications in Soil Science and Plant Analysis, pages 763-780.
    10. Hartman E, J.D. Keeler and J. M Kowalski, 1990."Layered neural networks with Gaussian hidden units as universal approximations". Neural Computation, I.
    11. Hayati M, A. M Rashdi and A. Rezaee, 2011. Prediction of grain size of nanocrystalline nickel coatings using adaptive neuro-fuzzy inference systemSolid State Sciences, 13, 163-167.
    12. Hecht-Nielsen, R, 1990. Neurocomputing. Addison-Wesley, Reading, Mass.
    13. Hezarjaribi A, F. Nosrati Karizak, k. Abdollahnezhad and Ghorbani Kh, 2013. The Prediction Possibility of Soil Cation Exchange Capacityby Using of Easily Accessible Soil Parameters.Journal of Water and Soil. Vol. 27, No.4.
    14. Jang J, C. Sun and E. Mizutani, 1997. Neuro-Fuzzy and Soft Computing: AComputational Approach to Learningand Machine Intelligance. Prentice Hall, Upper Saddle River, New Jersey, USA.
    15. Jang J. S. R, 1993. ANFIS: Adaptive network-based fuzzy inference systems. IEEE Transactions On Systems, Man, and Cybernetics 23: 665–685.
    16. Kaur R., S. Kumar, and H P. Gurung, 2002. A pedo-transfer function for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research 40: 847–57.
    17. Keshavarzi A, F. Sarmadian, E. S. E. Omran and Iqbal M, 2015A neural network model for estimating soil phosphorus using terrain analysis., Egyptian Journal of Remote Sensing and Space Sciences, 25:1423–1429.
    18. Khoshnevisan B, S.H Rafiee, M. Omid, H. Mousazadeh. 2014. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs.information Processing in Agriculture.10:1016.
    19. Koekkoek  E.J.W and H. Booltink, 1999. Neural networks models to predict soil water retention.Eur. J. Soil Sci. 50, 489—495.
    20. Krogh L, H.B Madsen, and M.H Greve, 2000. Cation exchange capacity pedotransfer functions for Danish soils. Acta Agric. Scand Sect. B, Soil and Plant Sci., 50:1–12.
    21. Manrique  L.A, C.A Jones and P.T Dyke, 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Sci. Soc. Am. J. 50, 787–794.
    22. McBratney A.B, B. Minasny, S.R Cattle, and R.W Vervoort, 2002. From pedotransfer functions to soil inferencesystems. Geoderma, 109:41-73.
    23. Menhaj M, 2009. Fundamental of Artificial neural networks, Amirkabir Press, 245p.
    24. Memarian fard M and H. Beigi harchagani, 2009. Comparison of artificial neural network and regressionpedotransfer functions models for prediction of soil cation exchange capacity in Chaharmahal Bakhtiari province. Journal of Water and Soil, Vol. 23, No. 4, Winter 2009, p. 90-99.
    25. Olsen S.R and J.F Sommers, 1982. Phosphorus. P 403-430, In: A.L. Page (ed.), Methods of soil Analysis. Agron. No. 9, part 2: Chemical and microbiological properties, 2nd edition, Am. Soc. Agron., Madison, WI, USA.
    26. Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. In Soil Science Society of America (Vol. 1159)
    27. Paulo H.F, J.P. Ronei., D.A. João Carlos, 2002. Determination of organic matter in soils using radial basis Function networks and near infrared spectroscopy. Analytica Chimica Acta 453:125–134.
    28. Richards L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils, L.A. Richards (eds). Handbook of U.S. Dept. of Agriculture, Washington, pp, 4-160.
    29. Rezaei M, A. Majdi, M. Monjezi, 2012. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 24(1):233–241.
    30. Sarmadian, F, R. Taghizadeh Mehrjardi, 2009. Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan Province, North of Iran. Global Journal of Environmental Research, 2 (1): 30–35.
    31. Schaap, M.G and W. Bouten, 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32: 3033-3040.
    32. Schap, M. G, F. J. Leij and M. T. Van Genuchten, 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Journal of Soil Science Society of America,62, 847–855.
    33. Tay ,J.H and X. Zhang., 2000. A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 34 (11), 2849–2860.
    34. Tomasella, J, M. G. Hodnett and L. Rossato, 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Journal of Soil Science Society of America, 49, 1100-1105. 
    35. Walkly, A., and Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
    36. Wosten ,J.H.M, Y.A .Pachepsky and W.J. Rawls, 2001. Pedotransferfunctions: bridging the gap between available basic soil data andmissing soil hydraulic characteristics. Journal of  Hydrolgy. 251, 123–150.
    37. Yang,F. g, S. y. Cao, X. n. Liu and K.j. Yang, (2011). Design of groundwater level monitoring network with ordinary kriging. Journal of Hydrodynamic Ser. B, 20(3): 339-346.
    38. Yilmaz, I and O. Kaynar. 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38: 5958–5966.