Effects of Biological Oxidation of Sulfur on Soil Properties and Nutrient Availability in Some Soils of Iran

Authors

1 Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Associate Professor, Fars Agricultural Research Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

4 Research Instructor, Safiabad Agricultural Research Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran

5 Research Instructor, Kermanshah Agricultural Research Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran

6 Assistant Professor, Khorasan Razavi Agricultural Research Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran

7 MSc. of Soil Science, Soil and Water Research Department, Kerman Agricultural Natural resources research and education center, AREEO, Kerman, Iran

8 Research Instructor, Kerman Agricultural Research Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran

Abstract

There are problems in solubility and bioavailability of nutrient elements in soils of Iran because of parent materials and climate. Sulfur oxidation and sulfuric acid production is one of the strategies for overcoming this problem. Many soil microorganisms including Thiobacillus are capable of oxidizing sulfur and thereby decreasing soil pH. In the present study, the effect of sulfur and Thiobacillus was studied for evaluation of some chemical soil characteristics in a factorial randomized complete block design in research fields of provinces of Khorasan Razavi, Fars, Kermanshah, Khuzestan, Qazvin and Kerman (Kerman and Jiroft). The factors including sulfur at levels of 500, 1000, and 2000 kg.ha-1, Thiobacillus at levels of 10, 20, and 40 kg.ha-1 and triple super phosphate fertilizer based on soil testing and 65% of this recommended rate. The experiment was performed both with and without plant. The results showed that the available phosphorous in soil increased significantly in many regions. The amount of sulfur exceeding 2000 kg caused increase in EC in some regions, therefore, we do not recommended sulfur application over 2000 kg.ha-1. The best treatment for this research was application of 500 to 1000 kg sulfur with combination of 10 to 20 kg Thiobacillus and triple super phosphate.According to the results of this study, application of 2000 kg.ha-1 or more  sulfur is not recommended, since compared with 1000 kg.ha-1 , it does not only cause soil pH reduction and increase the availability of the elements, but also increases the electrical conductivity. 

Keywords


  1. علی احیایی م و بهبهانی زاده ع ا، 1372 . شرح روش­های تجزیه شیمیایی خاک (جلد اول). نشریه 893 ، موسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی، وزارت کشاورزی، تهران.
  2. پسندیده، م.، ملکوتی، م. ج. و کشاورز، پ. 1382. بررسی اثر گوگرد و مایه تلقیح تیوباسیلوس بر اکسایش گوگرد، pH محتویات چالکود و فراهمی فسفر از کود بیوفسفات طلایی. اولین سمینار ملی تولید و مصرف گوگرد در کشور، مشهد، ایران.
    1. Cifuentes, F. R. and Lindemann, W. C. 1993. Organic matter stimulation of elemental sulfur oxidation in calcareous soil. Soil Sci. Soc. Am. J., 57: 727-731.
    2. Deluca, T. H., Skogley, E. O. and Engle, R. E. 1989. Band-applied elemental sulfur to enhance the phytoavailability of  phosphorus in alkaline calcareous soils, Biol. Fert. Soils. 7: 346-350.
    3. Jaggi, R. C., Aulakh, M. S. and Sharma, R. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils, 41: 52-58.
    4. Kalbasi, M., Filsoof, F. and Rezai-Nejad, Y. 1988. Effect of sulfur treatment on yield and uptake of Fe, Zn and Mn by corn, sorghum and soybean. J. plant Nutr., 11: 1353-1360. 
    5.  
    6. Khavazi, K., Nourgholipour, F. and Malakouti, M. J. 2001. Effect of Thiobacillus and phosphate solubilizing bacteria on increasing P availability from rock phosphate and related Appropriate Technology-Latest Development and Practical Expriences. Kuala Lampur, Malasia.
    7. Kittmas,H. A. and Attoe, O. J. 1965. Availability of phosphorus in rock phosphate-sulfur fusion. Agron. J. 57: 331-334.
    8. McCready, R. G. L. and Krouse, H. R. 1982. Sulfur isotope fractionation during the oxidation of elemental sulfur by Thiobacilli in a solonetzic soil. Can. J. Soil Sci., 62: 105-110.
    9. Nor, Y. M. and Tabatabai, M. A. 1977. Oxidation of elemental sulfur in soils. Soil Sci. Soc. Am. J., 41: 736-741.
    10. Pasandideh, M., M.j. Malakouti and P. Keshavarz. 2003. Evaluation of sulfur and thiobacillus on sulfour oxidation, pH of fertilizer placement and availability of Golden-Biophosphate., Mashhad, Iran. (In Persian).
    11. Pathiratna, L. S. S., De, U. P. Waidyanatha, S. and Perirs, O. S.  1989. The effect of appatite and elemental sulfur mixtures on growth and p content of Centrocema pubescens. Fertil. Res. 21: 37-43.
    12. Penkin, C. F. 1977. Invention, relating to mixing phosphate and sulfure. U. S. Patent. No. 193, P: 896.
    13. Postgate, J.R. 1966. Media for sulfur bacteria. Laboratory Practice Journal, 15,1239-1244.
    14. Rosa. M. C., Muchovey, J. J. and Alwares, J. V. H. 1989. Temporal relations of phosphorous fraction in an oxisol amended with rock phosphate and Thiobacillus thiooxidans. Soil Sci. Soc. of Am. J., 53: 1096-1100.
    15. Tabatabai, M. A. 1986. Sulfur in Agriculture. Am. Soc. Agron. Inc., Madison, Wis., USA.
    16. Tate III, R. L. 1995. The sulfur and related biogeochemical cycle. P: 359-372. In M. Alexander (ed) Soil Microbiology. John Wiley and Sons Inc., New York.