Comparison of Zn and Pb Adsorption in the Presence of Fulvic Acid in a Calcareous Soil

Authors

1 Former MSc student, Ferdowsi University of Mashhad

2 Professor, Soil Science Department, Faculty of Agriculture, Ferdowsi University of Mashhad

3 Associate Professor, Soil Science Department, Faculty of Agriculture, Ferdowsi University of Mashhad

Abstract

Soil is one of the most complex parts of environment that ecosystems health greatly depends on its quality. This study aimed to investigate the behavioral differences of Zn and Pb in the presence of humic substances. An experiment was conducted to measure levels of heavy metals (Zn and Pb), 6 levels of initial concentrations (0, 250, 500, 1000, 1500, 2000 mg L-1) in the presence and absence of fulvic acid in a completely randomized design with factorial arrangement. The results showed that, in the absence of fulvic acid, Pb adsorption was greater than Zn, whileits presence significantly (p< .05) increased Pb adsorption but decreased Zn adsorption in the solid phase. By using the Freundlich isotherm, it was estimated that adsorption process was chemical and, since the experimental data fitted reasonably well with the Freundlich isotherm, adsorption energy on solid surface was distributed uniformly.

Keywords


  1. Gaur and A. Adholeya. 2004. “Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavymetal contaminated soils,” Current Science, vol. 86, no. 4: 528–534.
  2. Al-Anber, Mohammed A., Zaid Al-Anber, and Idrees Al-Momani. 2016."Adsorption of ferric ion onto defatted seeds of cypress tree: Equilibrium and kinetic studies." Biointerface Research in Applied Chemistry 6.2.
  3. Ali, I. 2010. The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews, 39(3-4): 95-171.
  4. Bloomfield, C., Kelso, WJ., Pruden, G. 1976. Reactions between metals and humified organic matter. Journal of Soil Science. 27:16-31.
  5. Borggard, O. K., Holm, P. E., Jensen, J. K., Soleimani, M., Strobel, B. W. 2011. Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids. Acta agriculture Scandinavica. Section B, Plant soil science. 6: 577-581.
  6. Chand, M., Randhawa, N. S., & Sinha, M. K. 1980. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil. Plant and soil. 55(1): 17-24.
  7. Chen, Z., Xing, B., and McGill, W. B. 1999. A unified sorption variable for environmental applications of the Freundlich equation. Journal of environmental quality. 28(5): 1422-1428.
  8. Chen. S. B, Ma. Y. B, Chen. Land Xian. K. 2010. Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single- and multi-metal competitive adsorption study. Geochemical Journal. 44: 233- 239.
  9. Desta, M. B. 2013. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff Straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics, 2013.
  10. Du, A., Ledin, A., Karlsson, S., & Allard, B. 1995. Adsorption of zinc on colloidal (hydr) oxides of Si, Al and Fe in the presence of a Fulvic acid.Applied Geochemistry, 10(2): 197-205.
  11. Essington, M.E. 2003. Soil and water chemistry: An integrative approach. CRC Press,Boca Raton, FL.
  12. Ghazi, M., Weng, C.N., Rahman, A.H., and Zakaria, N.A. 2013. Freundlich Isotherm Equilibrium Equastions in Determining Effectiveness a Low Cost Absorbent to Heavy Metal Removal In Wastewater (Leachate) At Teluk Kitang Landfill, Pengkalan Chepa, Kelantan, Malaysia. Journal of Geography and Earth Science.1:1-8.
  13. Guberman, D.E., 2012. Geological Survey Minerals Yearsbook. Lead. U.S., pp: 1-18.
  14. Hararah. M. A. 2012. Zinc adsorption–desorption isotherms: possible effects on the calcareous vertisol soils from Jordan. Environmental Earth Science. 65(7): 2079-2085.
  15. Havlin, J.L., J.D. Beaton, S.L. Tisdale, W.L. Nelson. 1999. Soil Fertility and Fertilizers, 6th Edition. Upper Saddle River, N.J: Prentice-Hall, Inc. 499 p.
  16. Hildebrand, E. E., & Blum, W. E. 1975. Fixation of emitted lead by soils.Zeitschrift für Pflanzenernährung und Bodenkunde, 138(3): 279-294.
  17. Jalali, M. and Moharrami, S., 2007. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma, 140(1), pp.156-163.
  18. Kerndorff, H. and Schnitzer, M., 1980. Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44(11), pp.1701-1708.
  19. McBride, M. B. 1994. Reactions controlling heavy metal solubility in soils. InAdvances in soil science. Springer New York: 1-59.
  20. McBride, M. B., and Brasiak, J. J. 1979. Zinc and copper solubility as a function of pH in an acid soil. Soil Science Society of America Journal, 43: 866-870.
  21. Misono, M., Ochiai, E. I., Saito, Y., & Yoneda, Y. 1967. A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. Journal of Inorganic and Nuclear Chemistry, 29(11): 2685-2691.
  22. Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142: 77-83.
  23. Prado, A. G., Torres, J. D., Martins, P. C., Pertusatti, J., Bolzon, L. B., & Faria, E. A. (2006). Studies on copper (II)-and zinc (II)-mixed ligand complexes of humic acid. Journal of hazardous materials, 136(3): 585-588.
  24. Sayyad, G., Afyuni, M., Mousavi, S. F., Abbaspour, K. C., Richards, B. K., & Schulin, R. 2010. Transport of Cd, Cu, Pb and Zn in a calcareous soil under wheat and safflower cultivation—a column study. Geoderma. 154(3): 311-320.
  25. Schnitzer, M., Kerndorff, H. Reaction of Fulvic acid with metal ions. 1981. Chemistry and Biology Research Institute, Agriculture Canada, Ottawa, Ontario KJA OC6, Canada: 97-108.
  26. Sharif, M., Khatak, R. A., and Sarir, M. S. 2002. Effect of Different levels of lignite coal derived humic acid on growth of maize plant, Soil Science and Plant Analysis. 33: 3567-3580.
  27. Sheela, T., Nayaka, Y. A., Viswanatha, R., Basavanna, S., & Venkatesha, T. G. 2012. Kinetics and thermodynamics studies on the adsorption of Zn (II), Cd (II) and Hg (II) from aqueous solution using zinc oxide nanoparticles.Powder Technology. 217: 163-170.
  28. Silveira, M.L.A., Alleoni, L.R.F., and Guilherme, L.R.G. 2003. Biosolids and heavy metals in soils. Scientia Agricola, 60, 793-806.
  29. Sims, J.L., and Patrick, W.H. 1978. The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Sci Soc Am J 42:258-262.
  30. Stevenson, F.J. 1982. Humus chemistry. John Wiley & Sons, New York.
  31. Wenming, D., Zhijun, G., Jinzhou, D., Liying, Z., & Zuyi, T. 2001. Sorption characteristics of zinc (II) by calcareous soil–radiotracer study. Applied Radiation and Isotopes. 54(3): 371-375.
  32. Usman, A.R.A., Kuzyakov, Y., Stahr, K. 2008. Sorption, desorption, and immobilization of heavy metals by artificial soil. MSc. thesis, University of Hohenhiem, Stuttgart.
  33. Wiersum, A. D., Chang, J. S., Serre, C., & Llewellyn, P. L. 2013. An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal–organic frameworks. Langmuir. 29(10): 3301-3309.
  34. Wu, C. H., Lin, C. F., Ma, H. W., & Hsi, T. Q. 2003. Effect of fulvic acid on the sorption of Cu and Pb onto γ-Al2 O3. Water research, 37(4):743-752.