Evaluation of the Regression Pedotransfer Functions Using Physical, Mechanical, and Chemical Soil Properties in the Estimation of the Least Limiting Water Range (LLWR)

Authors

1 Associate Professer., Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran

2 M. Sc. Students of Soil Science, Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran

3 Former M. Sc. Student of Soil Science, Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran

Abstract

Least limiting water range (LLWR) is one of the physical and qualitative soil characteristics with difficult, costly, and time-consuming measurement. The objective of this study was to estimate the LLWR using easy to measure soil properties by regression method. In this study, 192 soil samples were taken from 24 locations of West Azarbaijan provinceand soil water retention curve, soil penetration resistance curve, and confined compression curve were measured. To estimate the four moisture criteria of LLWR (θFc ،θPWP، θAFP andθSR), the soil basic properties (clay content and silt to sand ratio) were used as inputs and the basic model was developed. Then,the confined compression curve parameters only and along with the physico-chemical properties at different levels were added to the previous inputs and 7 pedotransfer functions (PTF) were developed. By entering parameters of confined compression solely and along with different physico-chemical properties in the second and third steps, respectively, for estimating the moisture criteria of the LLWR and calculating LLWR, root mean square error and Akaike’s information criteriondecreased significantly. The R values calculated for PTFs showed that the use of PTF3, PTF5 and PTF7 instead of PTF1 improved the estimation of the moisture criteria considerably (R values were equal to 0.70, 0.73, and 0.77, for PTF3, PTF5, and PTF7, respectively, in contrast to the 0.39 for PTF1). So, the moisture criteria of LLWR can be estimated with acceptable accuracy (R=0.77 and AIC= -154.31) using confined compression parameters as estimators. 

Keywords


  1. آریان پور، ح. و شرفا، م. 1392. تأثیر کشت بر رطوبت قابل‌دسترس خاک در بافت‌های مختلف با استفاده از توزیع خلل و فرج.‎ مجله الکترونیک مدیریت خاک و تولید پایدار، جلد سوم، شماره یک، صفحه 131-148.
  2. ابراهیمی، ع.، بیات، ح.، صادقی، س.، فلاح، م.، جره، م. و زنگنه، م. 1395. استفاده از خصوصیات منحنی تراکم خاک برای تخمین رطوبت خاک با استفاده از مدل ونگنوختن. مجله تحقیقات آب و خاک ایران، جلد 47، شماره 2، صفحه 217 تا 228.
  3. حیدری، ل.، بیات، ح. و ابراهیم زاده، گ. 1395. بررسی رابطه بین منحنی تراکم محصور و دامنه رطوبتی با کمترین محدودیت. مجله دانش آب و خاک، جلد 26، شماره 2/4، صفحه 243 تا 256.
  4. فیضی دولت آبادی، پ. 1389. اثر مدیریت زراعی و بافت خاک بر دامنه رطوبتی با حداقل محدودیت. پایان­نامه‌ کارشناسی ارشد خاک­شناسی، دانشکده‌ کشاورزی دانشگاه بوعلی سینا.
  5. کاظمی، ز. 1388. اثر سیمانی کننده­ها بر دامنه رطوبتی با حداقل محدودیت در خاک با استفاده از توابع انتقالی. پایان­نامه‌ کارشناسی ارشد خاک­شناسی، دانشکده‌ کشاورزی دانشگاه تبریز.
  6. نصرتی میاندوآب، الف. 1386. تعیین دام‍ن‍ه‌ رطوبتی‌ ب‍ا ح‍داق‍ل‌ م‍ح‍دودیت‌ و بررسی ع‍وام‍ل‌ م‍ؤث‍ر ب‍ر آن‌ در برخی از خ‍اک­ه‍ای‌ ه‍م‍دان.‌ پایان­نامه‌ کارشناسی ارشد خاک­شناسی، دانشکده‌ی کشاورزی دانشگاه بوعلی سینا.
  7. Ajayi, A.E., Dias Junior, M.S., Curi, N., Gontijo, I., Araujo Junior, C.F. and A.V. India Junior. 2009. Relation of strength and mineralogical attributes in Brazilian latosols. Soil Tillage Res. 102, 14–18.
  8. Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19:716-723.
  9. An, S., Mentler, A., Mayer, H. and W.E.H. Blumc. 2010. Soil aggravation, aggregate stability,     organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena. 81:226-233.
  10. Annabi, M., Houot, H., Francou, F., Poitrenaud, M., and Y. Le Bissonnais. 2007. Soil aggregate stability improvement with urban composts of different maturities. Soil Sci Society Am J. 71: 413-423.
  11. Baumgartl, T. and B. Koeck. 2004. Modeling volume change and mechanical properties with hydraulic models. Soil Science Society of America Journal, 68: 57-65.
  12. Bayat, H., Ebrahimi, I., Rastgo, M., Zare abyaneh, H. and N. Davatghar. 2013. Fitting Different Soil Water Characteristic Curve Models on the Experimental Data of Various Textural Classes of Guilan Province Soils. Water and Soil Science, .23 (3):151-167.
  13. Bengough, A.G., Campbell, D.J.,  and M.F. O’Sullivan. 2001.p.638. In Smith, K.A. and Mullins, C.E. (Eds.), Penetrometer techniques in relation to soil compaction and root growth. Soil and Environmental Analysis. Marcel Dekker, Inc., New York.
  14. Boujila, A. and T. Gallai. 2008. Soil organic carbon fraction and aggregate stability in carbonated and no carbonated soils ib Tunisia. Journal of Agronomy, 7: 127-137.
  15. Botula, Y.D., Cornelis, W. M., Baert, G., and E. Van Ranst. 2012. Evaluation of  function for predicting water retention of soils in Lower Congo (D.R.Congo). Agricultural Water Management, 111,1–12.
  16. Bower, CA., Reitemeier, R. and M. Fireman. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-262.
  17. Braida, J.A., Reichert, J.M., Veiga, M.D. and D.J. Reinert. 2006. Mulch and soil organic     carbon content and their relationship with the maximum soil density obtained in the proctor test. Revista Brasileira de Ciência do Solo, 30: 605-614.
  18. Busscher, W. 1990. Adjustment of flat-tipped penetrometer resistance data to a common water content. Transactions of the American Society of Agricultural Engineers, 33: 519-524.
  19. Casagrande, A. 1936. The determination of the pre-consolidation load and its practical significance. P. 60-64. Proceedings of the international conference on soil mechanics and foundation engineering: Harvard University Cambridge.
  20. Clement, C. 1966. A simple and reliable tension table. Journal of Soil Science. 17(1): 133-135.
  21. Da Silva, AP., and B. Kay. 1997. Estimating the least limiting water range of soils from properties and management. Soil Science Society of America Journal, 61: 877-883.
  22. Da Silva, A. P. and B. Kay. 1996. The sensitivity of shoot growth of corn to the least limiting water range of soils. Plant and Soil, 184(2): 323-329.
  23. Da Silva, A., Kay, B., and E. Perfect. 1994. Characterization of the least limiting water range of soils. Soil Science Society of America Journal, 58:1775-1781.
  24. Dawidowski, J.B. and A.J. Koolen. 1994. Computerized determination of the preconsolidation stress in compaction testing of field core samples, Soil & Tillage Research, 31: 277-282.
  25. Dexter, A.R., Czyz, E.A., and O.P. Gate. 2004. Soil structure and the saturated hydraulic conductivity of subsoils. Soil and Tillage Research, 79: 185 – 189.
  26. Gee, G. W., and Or, D. 2002. Particle-size analysis. p. 255-293. In Dane, J. H. and Topp, G.C. (Eds.), Methods of Soil Analysis, Part 4- Physical Methods. Agronomy Monograph (vol. 9). ASA and SSA, Madison, WI.
  27. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115: 513-583.
  28. Hazelton, P.A. and B.W. Murphy. 2007. Interpreting soil test results: what do all the numbers mean?. CSIRO publishing.
  29. Imhoff, S., Da Silva, A.P. and D. Fallow. 2004. Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal, 68(1):17-24.
  30. Kay, B., Hajabbasi, M., Ying, J. and M. Tollenaar. 2006. Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.). Soil and Tillage Research, 88(1): 42-54.
  31. Keller, T., Lamandé, M., Schjønning, P., and A.R. Dexter. 2011. Analysis of soil compression curves from uniaxial confined compression tests. Geoderma, 163: 13-23
  32. Keller, T. and J. Arvidsson. 2007. Compressive properties of some Swedish and Danish structured agricultural soils measured in uniaxial compression tests. European Journal of Soil Science, 58: 1373-1381.
  33. Keller, T., Arvidsson, J., Dawidowski, J.B. and Koolen, A.J., 2004. Soil precompression                  stress. II. A comparison of different compaction tests and stress–displacement behavior of the soil during wheeling. Soil Tillage Res. 77: 97–108.
  34. Klute, A. 1986. Water retention: laboratory methods. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 635-662.
  35. Mosaddeghi, M.R. and Mahboubi, A.A. 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agron and Soil Sci. 57: 327-342.
  36. Mosaddeghi, M., Hemmat, A., Hajabbasi, M., and A. Alexandrou. 2003. Pre-compression stress and its relation with the physical and mechanical properties of a structurally unstable soil in central Iran. Soil and Tillage Research, 70: 53-64.
  37. Nemes, A., Rawls, W.J. and Y.A. Pachepsky. (2005).“ Influence of organic matter on the estimation of saturated hydraulic conductivityˮ. Soil Science Society of America Journal, 69(4):1330-1337.
  38. Neyshabouri, M.R., Kazemi, Z., Oustan, S. and M. Moghaddam. 2014. PTFs for predicting LLWR         from various soil attributes including cementing agents. Geoderma, 226: 179-187.
  39. Pirmoradian, N., Sepaskhah, A. and M. Hajabbasi. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engineering, 90: 227-234.
  40. Reinert Dalvan, J., Wolkowski Richard, P., Birl, L. and  J. Arriaga Francisco. 2002. Compaction effects on least limiting water range and plant growth. In 17. World Congress of Soil Science, Bangkok (Thailand). 14-21 Aug 2002.
  41. Silva, G.L., Lima, H.V., Campanha, M.M, Gilkes, R.J. and T.S. Oliveira. 2011. Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma, 167: 61-70.
  42. Sims, J.T. 1996. Lime requirement.P. 491–515. In: Sparks, D.L. Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (Eds.), Methods of soil analysis, Part 3- Chemical methods. ASA/SSSA Madison, Wisconsin, USA.
  43. Tang, AM., Cui, YJ., Eslami, J. and P. Défossez. 2009. Analysing the form of the confined uniaxial compression curve of various soils. Geoderma, 148: 282-290.
  44. Walkley. A. and IA. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
  45. Yoder, R.E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agronomy Journal, 28(5): 337-351.
  46. Zou, G., Sands, R., Buchan, G. and Hudson, I. 2000. Least limiting water range: A potential indicator of soil physical quality of forest soil. Aust. J. Soil Res. 38: 947-958.