Effect of Three Plant Species Residues and Their Biochars on some Properties and Potassium Status of a Calcareous Soil

Document Type : Research Paper

Authors

1 Associate Professor., Soil Science Department, College of Agriculture and Natural Resources of Darab, Shiraz University

2 Assistant Professor., Soil Science Department, College of Agriculture and Natural Resources of Darab, Shiraz University

3 Instructor of Range and Watershed Management Department, College of Agriculture and Natural Resources of Darab, Shiraz University

Abstract

Addition of plant species residues to soils can add high amounts of potassium (K) as well as carbon sequestration. In the current investigation, residues of three plant species including Ziziphus spina Christi L., Phragmites australis and Atriplex halimus L. were collected from Darab plain and converted to biochars at 500 °C for 3 h under oxygen-limited condition. The soil used in the study was collected from a field in Darab at depth of 0-30 cm. Experiment was done using a completely randomized design with 7 treatments (plant residues, their biochars and control) and 3 replicates. Three percent of plant residues or biochars was added to the soil. Soil samples were incubated for 2 months at FC moisture and 22 °C temperature condition. Then, pH, EC, CEC and the contents of soluble, exchangeable, and non-exchangeable K of soil samples were determined. Results indicated that application of Ziziphus spina Christi biochar, Atriplex halimus leaves and Atriplex halimus biochar significantly increased soil pH. All residues and biochars increased EC from 0.43 (Ziziphus spina Christi biochar) to 3.57 dS m-1 (Atriplex halimus biochar). Biochars had more effect on soil EC than residues. Biochars had no effect on CEC, but Ziziphus spina Christi L. and Phragmites australis increased it significantly. Application of residues and biochars significantly increased soluble (144-937 mg kg-1), exchangeable (354-1430 mg kg-1), non-exchangeable (379-607 mg kg-1) and HNO3-extractable K (1030-2918 mg kg-1) and biochars had more effect than residues. Generally, Atriplex halimus leaves were more effective than Ziziphus spina Christi and Phragmites australis residues on soil properties and K forms contents. Residues and biochars application concentrated K in the exchangeable form (34-49 %). For application of these compounds, especially in the case of Atriplex halimus L., their effects on soil salinity and pH should be considered.

Keywords


  1. جعفری، م.، ب. رسولی، و ر. عرفان‌زاده. 1384. بررسی تأثیر کشت گونه‌های تاغ، آتریپلکس و گز بر خصوصیات خاک در مسیر بزرگراه تهران-قم. مجله منابع طبیعی ایران، 58(4): 931-921.
  2. خلدبرین، ب.، و ط. اسلام‌زاده.1380. تغذیه معدنی گیاهان عالی. انتشارات دانشگاه شیراز. 902 صفحه.
  3. غدیری‌پور، پ، خ. ثاقب طالبی، م.ح. صالحه‌شوشتری و ا. اسماعیل‌زاده. 1394. بررسی برخی خصوصیات خاک و مشخصات کمی کنار (Ziziphus spina-christi L. Desf) در رویشگاه‌های طبیعی جنوب غربی ایران، مطالعه موردی: استآنهای خوزستان و بوشهر.‎ جنگل و فرآورده های چوب، مجله منابع طبیعی ایران، 68(1): 75-61.
  4. نجفی‌قیری، م. 1389. بررسی خصوصیات  مورفولوژیکی و کانی‌شناسی و وضعیت پتاسیم در خاک‌های استان فارس. پایان‌نامه دکتری بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز.
  5. نجفی‌قیری، م. 1394. تأثیر کاربرد بیوچارهای مختلف بر برخی ویژگی های خاک و قابلیت جذب بعضی از عناصر غذایی در یک خاک آهکی. مجله پژوهش‌های خاک، 29: 358-351.
  6. نجفی‌قیری، م.، س. نوذری، س.ح. نیک‌سیرت و ل. سلیمانپور. 1396. اثر انواع مختلف بقایای گیاهی و کودهای دامی بر توزیع شکل‌های پتاسیم دو نوع خاک رسی تحت شرایط رطوبتی متفاوت. مجله دانش آب و خاک، 1: 1-1.
  7. وزیریان، ر. ح.ر. عسگری، م. اونق، چ.ب. کمکی و ب. چوقی. 1394. ارزیابی رابطة بین تراکم کشت آتریپلکس (Atriplex halimus) با میزان کربن ترسیب‌شده در خاک (مطالعة موردی: مراتع نیمه‌‌خشک اینچه‌برون، استان گلستان). مرتع و آبخیزداری، 68(1): 180-173.‎
  8. Cantrell, K.B., P.G. Hunt, M. Uchimiya, J.M. Novak and K.S. Ro. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107: 419-428.
  9. Chapman, H.D. 1965. Cation exchange capacity. In: Black CA, editor. Methods of soil analysis. Part 2. Madison (WI): American Society of Agronomy. pp. 891–901.
  10. Chun, Y., G., Sheng, C. T., Chiou and B., Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Tech., 38: 4649-4655.
  11. Dianat, M., A.S. Booshehri, H.M. Alizadeh, M.R. Naghavi and H.R. Mashhadi. 2007. Analysis of genetic diversity among populations of common reed (Phragmites australis) in Iran. Iranian Journal of Weed Science, 3(1&2): 90-104.
  12. Haefele, S.M., Y. Konboon, W. Wongboon, S. Amarante, A.A. Maarifat, E.M. Pfeiffer, et al. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3): 430-440.
  13. Hammou, K.A., L. Rubio, J.A. Fernández and M.J. García-Sánchez. 2014. Potassium uptake in the halophyte Halimione portulacoides L. Aellen. Environmental and Experimental Botany, 107: 15-24.
  14. Havlin, J., J. Beaton, S. Tisdale and W. Nelson. 1999. Soil Fertility and Fertilizers. Ed. Pretince Hall, New Jersey.
  15. Helmke, P., Sparks, D., Page, A., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C. and Sumner, M. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis. Part 3-Chemical Methods. pp. 551-574.
  16. Helmeke, P. A., and D. L. Sparks. 1996. Methods of soil analysis, Part III: Chemical methods. American Society of Agronomy, Madison, Wisconsin, USA.
  17. Jalali, M. 2011. Comparison of potassium release of organic residues in five calcareous soils of western Iran in laboratory incubation test. Arid Land Research and Management, 25(2): 101-115.
  18. Jin-Hua, Y.U.A.N., X.U. Ren-Kou, W. Ning, and L.I. Jiu-Yu. 2011. Amendment of acid soils with crop residues and biochars. Pedosphere, 21(3): 302-308.
  19. Laird, D.A., P. Fleming, D.D. Davis, R. Horton, B. Wang and D.L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3): 443-449.
  20. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: science and technology. Earthscan, Routledge. Abingdon, UK. p. 976
  21. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal. 70(5): 1719-1730.
  22. Matinzadeh, Z., S. Breckle, M. Mirmassoumi and H. Akhani. 2013. Ionic relationships in some halophytic Iranian Chenopodiaceae and their rhizospheres. Plant and soil, 372(1-2): 523-539.
  23. Mukherjee, A., A. R. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3): 247-255.
  24. Najafi-Ghiri, M. 2014. Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil and Water Research, 9: 31-37.
  25. Najafi-Ghiri, M. and A. Abtahi. 2012. Factors affecting potassium fixation in calcareous soils of southern Iran. Archives of Agronomy and Soil Science, 58(3): 335-352.
  26. Najafi-Ghiri, M., and A. Abtahi. 2013. Potassium Fixation in Soil Size Fractions of Arid Soils. Soil and Water Research, 8(2): 49-55.
  27. Nelson, D.W., L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of soil analysis, Part 2. Madison (WI): American Society of Agronomy. pp. 961-1010.
  28. Novak, J.M., I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K. Das, et al. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3(1): 195-206.
  29. Obreza, T.A., A.K. Alva and D.V. Calvert. 1993. Citrus fertilizer management on calcareous soils. Cooperative Extension Service, University of Florida, Institute of Food and Agricultural Sciences.
  30. Rowell, D.L. 1994. Soil science: methods and applications: Longman Group Limited, Longman Scientific & Technical.
  31. Saied, A.S., J. Gebauer, K. Hammer and A. Buerkert. 2008. Ziziphus spina-christi (L.) Willd.: a multipurpose fruit tree. Genetic Resources and Crop Evolution, 55(7): 929-937.
  32. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. US Dept Agr Handbook 6.
  33. Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7):.516-525.
  34. Song, W. and M. Guo. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145.
  35. Sparks, D.L. P.M. Huang. 1985. Physical chemistry of soil potassium. In: Munson R.D., editor. Potassium in agriculture. Soil Science Society of America: Madison, WI. pp. 201–276.
  36. Wang, J., Z. Xiong and Y. Kuzyakov. 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Gcb Bioenergy, 8(3): 512-523.
  37. Yang, G., Z. Wang, Q., Xian, F., Shen, C., Sun, Y., Zhangand  and J. Wu. 2015. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Advances, 5(50): 40117-40125.
  38. Yuan, L., Huang, J., Li, X. and Christie, P. 2004. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant and Soil. 262:1.351-361
  39. Yuan, J.H. and R.K. Xu. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1): 110-115.
  40. Zolfi-Bavariani, M., A. Ronaghi, R. Ghasemi-Fasaei and J. Yasrebi. 2016. Influence of poultry manure–derived biochars on nutrients bioavailability and chemical properties of a calcareous soil. Archives of Agronomy and Soil Science, 62(11): 1578-1591.