Comparison and evaluation of RUSLE and RUSLE2 models in soil loss estimation at rangeland hillslopes of Khamesan watershed, Kurdistan

Document Type : Research Paper

Authors

1 Assistant professor, University of Kurdistan

2 Full Professor, Tehran University

3 Associate professor, Tehran University

Abstract

The recent study was carried out to evaluate the RUSLE and RUSLE2 models for predicting soil loss in stony rangeland hillslopes of Khamesan watershed using event data obtained from natural rainfall. For this purpose, total runoff and soil loss were measured during three years (2011, 2012 and 2013) in eighteen plots with 24 m long by 1.8 m wide (six hillslopes with three replicates). The input data for both models were measured and monitored including soil characteristics, plant cover, ground cover etc. Twenty-four rainfall events were examined during the study period. Two models, particularly RUSLE2, estimated average annual soil loss relatively well, despite the overestimation. The results showed that both models, especially RUSLE2, was able to estimate single events soil loss relatively acceptable, especially in rainfalls with lower erosivity index (R2(RUSLE)=0.25, R2(RUSLE2)=0.53; EF(RUSLE)=0.23, EF(RUSLE2)=0.53). Calibration of the erodibility factor in two models led to considerable improvement of model efficiency (R2(RUSLE)=0.69, R2(RUSLE2)=0.82; EF(RUSLE)=0.63, EF(RUSLE2)=0.80). Comparison of estimations of two models showed that in all studied situations, RUSLE2 model had higher efficiency than RUSLE. It seems that with respect to characteristics of studied hillslopes on one hand and improvements of RUSLE2 model relative to RUSLE on the other hand, it has been led better estimates of RUSLE2. Generally, the results showed that in hillslopes with higher rock fragment cover and lime content, efficiency of non-calibrated two models was lower than other hillslopes. This result shows that more research is needed to examine the effect of these parameters on estimation of soil loss in two models, especially for the RUSLE

Keywords


  1. جوادی، پ.، ح. روحی­پور وع.ا. محبوبی. 1384. نقش پوشش سنگریزه ای روی میزان فرسایش و رواناب با استفاده از فلوم و شبیه سازی باران. تحقیقات مرتع و بیابان ایران، 12(3)، صفحه 287 تا 310.
  2. خورسند، م.، ع. خالدی درویشان و م. غلامعلی فرد. 1395. مقایسه نتایج برآورد هدررفت سالانه مدل RUSLE با داده­های به­دست آمده از میخ­ها و کرت­های فرسایش در حوضه آبخیز معرف خامسان. اکوهیدرولوژی، 3(4)، صفحه 669 تا 680.
  3. رضائی، پ.، پ. فریدی، م. قربانی و م. کاظمی. 1393. برآورد فرسایش خاک با استفاده از مدل RUSLE و شناسایی مؤثرترین عامل آن در حوضة آبخیز گابریک- جنوب خاوری استان هرمزگان. پژوهش‌های ژئومورفولوژی کمی، سال سوم، شماره 1، تابستان 1393، صفحه 97 تا 113.
  4. گزارش مطالعات حوضه معرف و زوجی خامسان. 1391. اداره کل منابع طبیعی و آبخیزداری استان کردستان.
  5. واعظی، ع.ر.، ح.ع. بهرامی، ح.ر. صادقی و م.ح. مهدیان. 1389. برآورد عامل فرسایش­پذیری (K) با استفاده از مدل RUSLE در بخشی از خاک­های ناحیه نیمه خشک در شمال غربی ایران. پژوهش‌های حفاظت آب و خاک، 17(3)، صفحه 105 تا 124.
  6. Bagio, B., I. Bertol, N.H. Wolschick, D. Schneiders, and M.A.d.N.d. Santos. 2017. Water Erosion in Different Slope Lengths on Bare Soil. Revista Brasileira de Ciência do Solo, 41.
  7. Biswas, S.S., and P. Pani. 2015. Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Model. Earth Syst. Environ. 1(42):1-13.
  8. Cecílio, R.A., R.G. Rodriguez, L.G.N. Baena, F.G. Oliveira, F.F. Pruski, A.M. Stephan, and J.M.A. Silva. 2004. Analysis of the RUSLE and WEPP models for a small watershed located in Viçosa, Minas Gerais State, Brazil. 13th International Soil Conservation Organization Conference, Brisbane, Paper No. 658.
  9. Dane, H., G. Topp, and A. Warren. 2002. Methods of Soil Analysis Part-4 Physical Methods: SSSA Book Series-5. Soil Sci. Soc. Am. 866 page.
  10. Foster, G.R. 2005. Draft science documentation: Revised Universal Soil Loss Equation Version 2 (RUSLE2). USDA-ARS, Washington, DC.
  11. Foster, G.R., T.E. Toy, and K.G. Renard. 2003. Comparison of the USLE, RUSLE1.06c, and RUSLE2 for application to highly disturbed lands, in: First Interagency Conference on Research in Watersheds. pp. 154–160.
  12. Gebremichael, A., and T. Alamirew. 2012. Testing and Validation of the Revised Universal Soil Loss Equation (RUSLE2) at the Twin Catchments of Gununo, Wolaita. MSc thesis, Haramaya University.
  13. Guo, T., Q. Wang, D. Li, and J. Zhuang. 2010. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China. J. Soils Sediments 10:1200–1208.
  14. Hammad, A.A., H. Lundekvam, and T. Børresen. 2004. Adaptation of RUSLE in the eastern part of the Mediterranean region. Environ. Manage.4:829–841.
  15. Herrick, J.E., J.W. Van Zee, J. Belnap, J.R. Johansen, and M. Remmenga. 2010. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts. Catena 83:119–126.
  16. Ismail, J., and S. Ravichandran. 2008. RUSLE2 Model Application for Soil Erosion Assessment Using Remote Sensing and GIS. Water Resour. Manag.22:83–102.
  17. Jomaa, S., D. A. Barry, B.C.P. Heng, A. Brovelli, G.C. Sander, and J.Y. Parlange. 2012. Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling. Water Resour. Res.48(5):1-21.
  18. Kinnell, P.I. A. 2010. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol.385:384–397.
  19. Kinnell, P.I. A. 2014. Modelling event soil losses using the QREI30 index within RUSLE2. Hydrol. Process.28:2761–2771.
  20. Kinnell, P.I.A. 2015. Accounting for the influence of runoff on event soil erodibilities associated with the EI30 index in RUSLE2. Hydrol. Process.29:1397–1405.
  21. Mati, B.M., R.P.C. Morgan, and J.N. Quinton. 2006. Soil erosion modelling with EUROSEM at Embori and Mukogodo catchments, Kenya. Earth Surf. Process. Landforms 31:579–588.
  22. Mayor, A.G., S. Bautista, and J. Bellot. 2009. Factors and interactions controlling infiltration, runoff, and soil loss at the microscale in a patchy Mediterranean semiarid landscape. Earth Surf. Process. Landforms 34:1702–1711.
  23. Nearing, M. a., V. Jetten, C. Baffaut, O. Cerdan, a. Couturier, M. Hernandez, Y. Le Bissonnais, M.H. Nichols, J.P. Nunes, C.S. Renschler, V. Souchère, and K. Van Oost. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154.
  24. Nouwakpo, S.K., C.J. Williams, O.Z. Al-Hamdan, M.A. Weltz, F. Pierson, and M. Nearing. 2016. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps. Int. Soil Water Conserv. Res.4:75-86.
  25. Nyssen, J., M. Haile, J. Poesen, J. Deckers, and J. Moeyersons. 2001. Removal of rock fragments and its effect on soil loss and crop yield, Tigray, Ethiopia. Soil Use Manag.17:179–187.
  26. Parsons, A.J., and P.M. Stone. 2006. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena 67:68–78.
  27. Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool, and D.C. Yoder. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook, No.703, US Department of Agriculture Research Service, Washington, DC, USA, p. 348.
  28. Renard, K.G., G.R. Foster, G.A., Weesies, and J.P. Porter. 1991. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv.46:30–33.
  29. Risse, L.M., M.A. Nearing, J.M. Laflen, and A.D. Nicks. 1993. Error assessment in the universal soil loss equation. Soil Sci. Soc. Am. J. 57:825–833.
  30. Rosenmund, A., R. Confalonieri, P.P. Roggero, M. Toderi, and M. Acutis. 2005. Evaluation of the EUROSEM model for simulating erosion in hilly areas of central Italy. Riv. Ital. di Agrometeorol.10:15–23.
  31. Shamshad, a., M.N. Azhari, M.H. Isa, W.M.A. Wan Hussin, and B.P. Parida. 2008. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena 72:423–432.
  32. Spaeth Jr, K.E., F.B., Pierson Jr, M.A. Weltz, and W.H. Blackburn. 2003. Evaluation of USLE and RUSLE estimated soil loss on rangeland. J. Range Manage. 54: 234-246.
  33. Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner. 1996. Methods of soil analysis. Part 3-Chemical methods. Soil Sci. Soc. Am. Inc.
  34. Stolpe, N.B. 2006. A comparison of the RUSLE, EPIC and WEPP erosion models as calibrated to climate and soil of south-central Chile. Acta Agriculturae Scandinavica, Section B. Soil & Plant 37–41.
  35. Tiwari, A., L. Risse, and M. Nearing. 2000. Evaluation of WEPP and its comparison with USLE and RUSLE. Trans. ASAE 43:1129-1135.
  36. USDA-ARS., 2008. Draft Science Documentation: Revised Universal Soil Loss Equation Version 2 (RUSLE2). USDA-Agricultural Research Service, Washington, D.C. 444 page.
  37. Vaezi, A.R., S.H.R. Sadeghi, H.A. Bahrami, and M.H. Mahdian. 2008. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 97:414–423.
  38. Zavala, L.M., A. Jordan, N. Bellinfante, and J. GIL. 2010. Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Sci. Plant Nutr.56:95–104.