Climate Change Impact on Land Suitability Evaluation for Some Rainfed Crops in Miandoab Region

Document Type : Research Paper

Authors

Assistant Professor, Shahid Bakeri High Education Center of Miandoab, Urmia University

Abstract

Nowadays, considering the importance of food security, understanding the impact of climate change on land suitability for crop production has become an important issue. The main goal of the present research was to evaluate the climate change impacts on different rainfed crops land suitability under current and future climate change scenario in Miandoab region. For this purpose, Terraza and Almagra models were used in MicroLEIS DSS environment. Almagra model provides evaluation of the suitability of different land units for selected utilization types and Terraza model provides an experimental prediction for bioclimatic deficiency. Morphological and analytical data were obtained from 11 control soil units and saved in the SDBm soil database. Agro ecological data were obtained from Iran Meteorological Organization and saved in the CDBm climate database. Greenhouse gas emission scenarios were selected as future scenarios of climate change from models of Intergovernmental Panel on Climate Change (IPCC)­. The results revealed that, in the present conditions and in most of the different land units, the suitability order of crops are chickpea >melon> wheat. However, in the future it will be wheat> chickpea> melon. The most important soil limiting factors were salinity, texture, drainage, and lime content. The net effect of climate change on land suitability is negative, except for wheat, and therefore, in climate change conditions, the study area is unsuitable for production of chickpea and melon as rainfed crops . Loss of moisture with increasing drought index in the Terraza model showed that, in future, rainfed cultivation scenario seems to be highly affected by water stress.

Keywords


  1. اشرف ب.، موسوی بایگی م.، کمالی غ ع.، داوری کامران. 1390. پیش­بینی نیاز آبی چغندرقند در دوره­های 2030-2011 با استفاده از داده­های اقلیمی شبیه‌سازی‌شده توسط مدل ریزمقیاس کننده LARS-WG. نشریه آب‌ و خاک، جلد 25، شماره 5، صفحه­های 1184 تا 1196.
  2. سبزی­پرور ع ا.، ترکمان م.، مریانجی ز. 1391. بررسی تأثیر شاخص­ها و متغیرهای هواشناسی کشاورزی در عملکرد بهینه گندم (مطالعه موردی: استان همدان). نشریه آب ‌و خاک، جلد 26، شماره 6، صفحه­های 1154 تا 1167.
  3. طباطبایی م.، قهرمان ن.، بابائیان ا­. 1394­. بررسی میزان تغییرات دما و بارش در قرن حاضر در ایـران نسـبت بـه میـانگین اقلیمی تحت سناریوهایICPP AR5. همایش آب و اقلیم. کنگره ملی آبیاری و زهکشی. دانشگاه فردوسی، مشهد.
  4. فرشی ع ا، 1378. برآورد آب موردنیاز گیاهان عمده زراعی و باغی کشور( جلد اول)، انتشارات سازمان تحقیقات و آموزش کشاورزی، تهران
  5. .Bower, C.­A. 1952. Exchangeable cation analysis of saline and alkali soils. Journal of soil science, 73: 251-261.
  6. De la Rosa, D., and Magaldi, D. 1982. Rasgos methdologie de un Sistema de evaluaciontierras para regions mediterraneas. Soc, Esp, Cien, Suelo, Madrid. (In Spanish).
  7. De la Rosa, D., Moreno, J.­A, Garcia, L.V., and Almorza, J. 1992. MicroLEIS: A microcomputer-based Mediterranean land evaluation information system. Soil Use and Management, 8: 89-96.
  8. Darwish, K.M., Abdel Kawy, W.A. 2014. Land suitability decision support for assessing land use changes in areas west of Nile Delta, Egypt. Arabian Journal of Geosciences, 7(3): 865–875.
  9. Furió, D., andMeneu, V. 2011. Analysis of extreme temperatures for four sites across Peninsular Spain. Theoretical and Applied Climatology, 104(1-2): 83-99.
  10. Gee, G.W., and Bauder, J.W. 1986. "Particle-size analysis". p. 383-411. In P. Klute (ed.) Methods of Soil analysis.Part 1. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
  11. Geological survey and Mineral Exploration of Iran. 2006. Geology Map of Iran, 1:100000series, Shite N, Miandoab.
  12. Ghahreman, N., and Tabatabaei, M. 2015. Feasibility of sugarcane cultivation during the next five decades under RCP climate change scenarios. (Case study: Khuzestan province, Iran). ICID, Montpellier, France.
  13. IPCC, 2014. Climate Change. Fourth Assessment Report, Synthesis Report. Topic1, Chapter 10, Valencia, Spain.
  14. Liambila, R.N., and Kibret, K. 2016. Climate Change Impact on Land Suitability for Rainfed Crop Production in Lake Haramaya Watershed, Eastern Ethiopia. Journal of Earth Science and Climatic Change, 7(3): 1-12.
  15. Marengo,J.­A.,Chou, S.­C., Torres, R.­R., Giarolla, A., Alves, L.­M., and Lyra, A. 2014. Climate change in central and South America: Recent trends, future projections, and impacts on regional agriculture. Working Paper No 73.
  16. McLean, E.O. 1982. Soil pH and Lime requirement. p. 199-224. In A.L. Page et al (ed.) Methods of Soil Analysis. Part 22nd ed. Agron, Monogr. No. 9. ASA and SSSA, Madison, WI.
  17. Nelson, R.E. 1982.Carbonate and gypsum. p. 181-197. In A.L. Page et al (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
  18. Nelson, W., and Sommers, L. 1982. Total carbon, organic carbon and organic matter. p. 532-581. In A.L. Page et al (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
  19. Newhall, F., and Berdanier, C.R. 1996. Calculation of soil moisture regimes from the climatic record. Natural Resources Conversations Service, Soil Survey Investigation Report, No. 46.
  20. Okonya, J.S., Syndikus, K., and Kroschel, J. 2013. Farmers’ perception of and copingstrategies to climate change: evidence from six agro-ecological zones ofUganda. Journal of Agricultural Science, 5(8): 252-263.
  21. Roades,J.D. 1996. "Soluble salts". p. 167-179. In A.L. Page et al (ed.). Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  22. Seneviratne, S.­I., Donat, M.­G., Mueller, B., and Alexander, L.­V. 2014. No pause in the increase of hot temperature extremes. Nature Climate Change, 4(3): 161-163.
  23. Shahbazi, F., Jafarzadeh, A.A., Sarmadian, F., Neyshaboury, M.R., Oustan, Sh., Anaya-Romero, M., Lojo, L., and De la Rosa., D. 2008. Land capability evaluation and climate change impact in semi-arid and meditranean areas using MicroLEIS DSS. Pp. 216-217. 3rd Congress of Climate Change and Sustainable Development. Huelva, Spain.
  24. Shahbazi, F., Jafarzadeh, A.A., Sarmadian, F., Neyshabouri, M.R., Oustan, Sh., Anaya-Romero, M., and De la Rosa, D. 2010. Climate Change Impact on Bioclimatic Deficiency, Using MicroLEIS DSS in Ahar Soils, Iran Journal of Agricultural Science and Technology, 12: 191-201.
  25. Thomas, G.­W. 1982."Exchangeable Cations". p. 159-165. In A.L. Page et al (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.