Digital Soil Mapping Using Random Forests Model in Abyek, Qazvin Province

Document Type : Research Paper

Authors

1 Ph.D Student, University of Tehran

2 Professor, Dept. of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran

3 Assistant Professor, Dept. of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran

Abstract

Today, there is great demand for accurate soil information to determine the relationship between soil and landscape, and easy updating of soil maps has increasingly gained importance. Digital soil mapping techniques can be cost-effective solutions to obtain information dealing with the soil types over large areas. The objective of this study was to provide a digital soil map in the Abyek region of Qazvin province using random forest model for management purposes and sustainable land use planning. To this end, soil samples were collected based on cLHS. After the laboratory analysis, using random forest model and auxiliary variables derived from a digital elevation model with a spatial resolution of 30 m and Landsat 8 imagery, the modeling and preparation of regional soil maps were performed. Out of 7261 ha, the dominant soil was classified as Loamy-skeletal, mixed, superactive, thermic Typic Calcixerepts. The results showed that soil modeling using random forest algorithm could accurately predict (Kappa coefficient ~ 0.83) soil classes in the region. 

Keywords


  1. Breiman, L.  2001. "Random forests" Machine learning. 45:5-32.
  2. Camera, C., Z. Zomeni., J.S. Noller., A.M. Zissimos., I.C. Christoforou., and A. Bruggeman. 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma 285:35-49.
  3. Gee, G.W., and J.W. Bauder. 1986. Particle size analisis. p. 383-411. In Methods of Soil Analysis. Part l. Soil Science Society of America. Madison, WI.
  4. Hengl, T., D.G. Rossiter., and A. Stein. 2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research. 41:1403-1422.
  5. Hengl, T., G.B. Heuvelink., B. Kempen., J.G. Leenaars., M.G. Walsh., K.D. Shepherd., K. D., and J.E. Tondoh. 2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PloS one. 10:125-814.
  6. Heung, B., C.E. Bulmer., and M.G. Schmidt. 2014. Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma. 214:141-154.
  7. Heung, B., H.C. Ho., J. Zhang., A. Knudby., C.E. Bulmer., and M.G. Schmidt. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265:62-77.
  8. Jenny, H. 1941. Factors of soil formation: A system of quantitative pedology. Courier Corporation.
  9. Lagacherie, P., A.B. McBratney., M. Voltz. 2007. Digital soil mapping: an introductory perspective. Elsevier.
  10. Landis, J. R., and G.G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics. 159-174.
  11. McBratney, A.B., M.L. Mendonça Santos., and B. Minasny. 2003. On digital soil mapping. Geoderma. 117:3-52.
  12. McKay, M.D., R.J. Beckman., and W.J. Conover. 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21:239-245.
  13. Minasny, B., and A.B. McBratney., 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences. 32:1378-1388.
  14. Moore, I. D., R.B. Grayson., and A.R. Ladson. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes. 5:3-30.
  15. Pahlavan-Rad, M. R., F. Khormali., N. Toomanian., C.W. Brungard., F. Kiani., C.B. Komaki., and P. Bogaert. 2016. Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma. 279:141-148.
  16. Pahlavan-Rad, M. R., N. Toomanian., F. Khormali., C.W. Brungard., C.B. Komaki., and P. Bogaert. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma. 232:97-106.
  17. Palm, C., P. Sanchez., S. Ahamed., and A. Awiti. 2007. Soils: A contemporary perspective. Annu. Rev. Environ. Resour. 32:99-129.
  18. Sanchez, P. A., S. Ahamed., F. Carré., A.E. Hartemink., J. Hempel., J. Huising., ... and B. Minasny. 2009. Digital soil map of the world. Science. 325:680-681.
  19. Sparks, D. L., and J.M. Bartels. 1996. Chemical methods (No. 5-3). Madison: Soil Science Society of America.
  20. Sreenivas, K., V.K. Dadhwal., S. Kumar., G.S. Harsha., T. Mitran., G. Sujatha., ... and T. Ravisankar. 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma. 269:160-173.
  21. Stum, A. K., J.L. Boettinger., M.A. White., and R.D. Ramsey. 2010. Random forests applied as a soil spatial predictive model in arid Utah. In Digital Soil Mapping. Springer, Netherlands.
  22. Taghizadeh-Mehrjardi, R., B. Minasny., F. Sarmadian., and B.P. Malone. B. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213:15-28.
  23. Walkley, A., and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 37:29-38.
  24. Were, K., D.T. Bui., Q.B. Dick., and B.R. Singh. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52:394-403.‏