Effect of Pistachio Residue and Salinity on Dynamic and Static Water Repellency of Three Texturally Different Calcareous Soils

Document Type : Research Paper

Authors

1 Former MSc. Student, Department of Soil Science, College of Agriculture, Shiraz University

2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University

3 Professor, Department of Soil Science, College of Agriculture, Shiraz University

Abstract

Salinity and organic matter deficiency are the main problems of soils in arid and semi-arid regions. The use of residues in presence of salinity may affect soil properties differently. In this research, the effect of zero, 1.5%, 3%, and 4.5% application of pistachio residues and electrical conductivity (salinity) of water including three levels of 4, 8, and 12 dS m-1 were investigated on water repellency of soils with three different textures, namely, silty clay, loamy, and loamy sand. The static and dynamic water repellencies were determined by measuring soil-water contact angle and water penetration time. The mean values of soil-water contact angle for clay, loam, and sandy loam soils were 70±2.5º, 65±2.6º, and 62 ±3.4º, and water droplet times (WDPT) were about 35±2.6, 26±1.6, and 18±0.6 s, respectively. Accordingly, static water repellency of the fine textured soil was more than that of the medium and coarse textured soils by 3% and 7%, respectively, while the dynamic water repellency was 24% and 95% more, respectively. Salinity had no significant effect on static or dynamic water repellency. However, the salinity of 12 dS.m-1 increased the static water repellency of clay soil by 7%. The residues increased the static and dynamic water repellency of soils, except in silty clay soil where the effect of residues on static water repellency was not significant. In general, salinity levels had no significant effect on the mean values of the static and dynamic water repellency of soils; whereas application of residues (except for 4.5% residues) increased both static and dynamic water repellency. Furthermore, since the applied residues were probably not fully decomposed in the time period used in this study, it is recommended that longer or different time periods be used in the future studies. 

Keywords


  1. ابطحی، ع.، ن. کریمیان، و م. صلحی. 1370 .گزارش مطالعات خاک شناسی نیمه تفضیلی اراضی باجگاه – استان فارس، 73 صفحه.
  2. بای بوردی، م. 1388. فیزیک خاک، انتشارات دانشگاه تهران.
  3. خرمالی، ف. 1382. کانی شناسی، میکرومورفولوژی و تکامل خاک­های مناطق خشک و نیمه خشک استان فارس، جنوب ایران. رساله دکتری، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز.
  4. زارعی، ز.، ع. ا. موسوی، ع. ثامنی و ع. ا. کامگار حقیقی. 1394. اثر برخی اصلاح کننده های آلی و معدنی بر تغییرات زمانی آبگریزی پویا و ایستا در یک خاک آهکی. نشریه پژوهش­های خاک (علوم خاک و آب)، شماره 29، صفحات 475 تا 485.
  5. شیرانی، ح.، ا. ریزه بندی، ح. دشتی، م. ر. مصدقی و م. افیونی. 1390. اثر تفاله­ی پسته بر برخی خواص فیزیکی و تراکم پذیری دو نوع خاک. مجله علوم و فنون کشاورزی و منابع طبیعی، سال 15، شماره 55، صفحات 85 تا 97.
  6. میربابایی، س. م.، م. شعبان­پور و ع. ا. ذوالفقاری. 1392. بررسی وجود و شدت آب­گریزی خاک در مناطق جنگلی تالش در استان گیلان. مجله تحقیقات آب و خاک ایران، سال 44، شماره 2، صفحات 172 تا 163.
  7. Alyousef, A. and Ibrahim, Gh. 2015. Inhibitory effect of fruit hull and leaves of pistachio on weed growth in pots. Int.  J. Pharmtech. Res. 7: 365-369.
  8. Bachmann, J., J. Kruger, M. O. Gobel and S. Heinze. 2016. Occurrence and spatial pattern of water repellency in a beech forest ubsoil. J. Hydrol. Hydromech. 64: 100–110.
  9. Dekker, L. W. and C. G. Ritsema. 1994. How water moves in a water repellent sandy soil. I. potential and actual. Water Res. Res. 30: 2507-2017.
  10. Doerr, S. H., R. A. Shakesby and R. P. D. Walsh. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51: 33-65. 
  11. Doerrو S. H., R. A. Shakesby, L. W. Dekker and C. J. Ritsema. 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land use types in a humid temperate climate. Eur. J. Soil Sci. 57: 741–754.
  12. Gee, G. W. and D. Or. 2002. Particle-size analysis. In: Dane, J. H. and G. C. Topp. (Eds.), Methods of Soil Analysis, Part IV, Physical Methods. Agronomy Monograph, No 9. SSSA and ASA, Madison, WI. PP. 255-293.
  13. Kazemi, M. and M. R. Zand-Monfared. 2010. Furfural production from Pistachio green hulls as agricultural residues. J. App. Chem. Res. 3(121): 19-24.
  14. Leleelamanie, D. A. L., J. Karube, and A. Yoshida. 2010. Clay effects on the contact angle and water drop penetration time of model soils. Soil Sci. Plant Nutr. 56(3): 371-375.
  15. Korenkova, L., I. Šimkovic, P. Dlapa, B. Jurani and P. Matus. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil Water Res. 10: 78–89.
  16. Krol, A., J. Lipiec and M. Frac. 2015. The effect of dairy sewage sludge amendment on repellency and hydraulic conductivity of soil aggregates from two depths of Eutric Cambisol.  J. Plant Nutr. Soil Sci. 178: 270–277.
  17. Letey, J., J. Osborn and R. E. Pelishek. 1962. Measurement of liquid-solid contact angles in soil and sand.  Soil Science, 93: 149-153.
  18. Letey, J., M. L. K. Carrillo and X. P. Pang. 2000. Approaches to characterize the degree of water repellency. J. Hydrol. 232: 61–65.
  19. Lichner L., L. Holko, N. Zhukova, K. Schacht, K. Rajkai, N. Fodor and R. Sandor. 2012. Plant and biological soil crust influence the hydrophysical parameters and water flow in an Aeolian sandy soil. J. Hydrol.  Hydromech. 60: 309–318.
  20. Lindsay, W. L. and W. A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42: 421-428.
  21. Mataix-Solera, J. and S. H. Doerr. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected forests in southeastern Spain. Geoderma, 118(1-2): 77-88.
  22. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. In: D. L. Sparks et al., (Eds.), Methods of Soil Analysis. Part III. 3rd Ed. SSSA and ASA, Madison, WI. PP.  61-1010.
  23. Olsen, S. R., C. V. Cole, F. S. Watanabe and L. A. Dean. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA. Cir. 939. U. S. Gov. Print. Office, WI.
  24. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: D. L. Sparks et al. (Eds.), Methods of Soil Analysis, Part III, 3rd Ed., SSSA and ASA, Madison, WI. PP. 417-436.
  25. Rice, E. L. 1984. Allelopathy.  Academic Press, 422 p.
  26. Richards, L. A. 1954. Handbook No. 60: Diagnosis and Improvement of Saline and Alkali Soils. Soil and Water Conservation Research Branch Agricultural Research Service, Soil Salinity Laboratory, USA.
  27. Sepehrnia, N., M. A. Hajabbasi, M. Afyuni and L. Lichner. 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71: 1137-1143.
  28. Sepehrnia, N., M. A. Hajabbasi, M. Afyuni and L. Lichner. 2017. Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles. J. Hydrol. Hydromech. 65: 99–104.
  29. Shukla, M. K. 2013. Soil Physics: An Introduction. CRC press, 478 p.
  30. Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Leoppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston and M. E. Summer. 1996. Methods of Soil Analysis, Soil Science Society of America, Madison, WI, 1973P.
  31. Thomas, G.W. 1996. Soil pH and Soil Acidity. In: D. L. Sparks et al. (Eds.). Methods of Soil Analysis. Part III, 3rd Ed. SSSA and ASA, Madison, WI. PP. 475-490.
  32. Vasileios, D., L. Pagorogon, E. Gazani, S. H. Doerr, F. Pliakas, and C. J. Ritsema. 2013. Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil. Ecol. Eng. 58: 393-398.
  33. Ward, P. R., M. M. Roper,  R. Jongepier and S. F. Micin. 2015. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil.  Biologia, 70: 1480–1484.
  34. Woche, S. K., M. O. Goebel, M. B. Kirkham, R. Horton, R. R. Vanderploeg, and J. Bachman. 2005. Contact angle of soil as affected by depth, texture, and land management. Eur. J. Soil Sci. 56(2): 239-251.