Investigation of Properties of Liquid and Solid Fractions of Hydrochars Produced from Apple Wood Wastes at Different Temperatures and Times of Hydrothermal Carbonization

Document Type : Research Paper

Authors

1 PhD student of Soil Science, College of Agriculture, Tabriz University

2 Associate Professor of Soil Science, College of Agriculture, Tabriz University, Tabriz, Iran

3 Professor of Soil Science, College of Agriculture, Tabriz University, Tabriz, Iran

Abstract

Hydrochar is a carbonaceous solid material obtained from hydrothermal carbonization (HTC) of biomass and has received more attention as a potential agent for soil contaminants stabilization and soil improvement. Physical and chemical properties of hydrochar are affected by the feedstock nature and production processes (HTC temperature and reaction time). The aim of this work was investigation of some properties of hydrochars produced from apple pruning wastes at temperatures of 180, 200, and 220 °C and 6, 9, and 12 h reaction times. In addition, the effect of the hydrochar produced at 180 °C and 12 h on availability of some nutrients in soil and corn growth was investigated. The results showed that pH of solid and liquid fractions of hydrochars were in the range of 5.7-6.9 and 3.5-4.1, respectively. By increasing conversion temperature and reaction time, the hydrochar yield and the pH of the liquid fraction were decreased, but pH and concentrations of P, Ca, Mg, and ash of solid fraction and concentrations of N, P, Ca, Mg, Fe, Mn, Cu and Zn and EC of liquid fraction were increased. Findings from this work suggested that HTC at higher temperatures increased elements concentrations in both solid and liquid fractions, and may be useful for agricultural aims. The results of the greenhouse experiment showed that hydrochar increased the availability of P added to the soil and the corn P uptake. 

Keywords


  1. احمدی آغ­تپه، ا.، ا. قنبری، ا. سیروس­مهر، ب. سیاه­سر و م.ر. اصغری­پور. 1391. اثر پساب تصفیه شده، همراه با محلول پاشی کود کامل بر برخی خصوصیات کمی و کیفی علوفه ارزن دم­روباهی (Setaria italica). نشریه آب و خاک (علوم و صنایع کشاورزی). 26(3): 671-660.
  2. کریمی، ز.، ع. نصراله­زاده اصل، ف. جلیلی و ر. ولیلو. 1391. تأثیر کود زیستی فسفات بارور-2 و محلول پاشی عناصر ریزمغذی بر عملکرد و اجزای عملکرد ذرت دانه‌ای 704. مجله پژوهش در علوم زراعی. 4(15): 43-33.
  3. عاشوری، م.، م. اصفهانی، س. عبدالهی و ب. ربیعی. 1392. اثر محلول­پاشی مکمل­های کود آلی بر عملکرد دانه، اجزای عملکرد و خصوصیات کیفی دو رقم برنج (Oryza sativa L.). تحقیقات غلات. 3(4): 305-291.
  4. Bargmann, I., M.C. Rillig, A. Kruse, J.M. Greef, and M. Kücke. 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sc. 177 (1): 48-58.
  5. Bargmann, I., M.C. Rillig, W. Buss, A. Kruse, and M. Kuecke. 2013. Hydrochar and biochar effects on germination of spring barley. J. Agron. Crop Sci. 199(5): 360-373.
  6. Child, M. 2014. Industrial-Scale hydrothermal carbonization of waste sludge materials for fuel production. MSc dissertation, Lappeenranta University of Technology, Lappeenranta, Finland.
  7. Dane, J.H., and G.C.Topp. 2002. Methods of soil analysis. Part 4, Physical methods. ASA-CSSA-‎SSSA Publisher, USA.
  8. Fang, J., B. Gao, J. Chen, and A.R. Zimmerman. 2015. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chem. Eng. J. 267: 253-259.
  9. Funke, A., and F. Ziegler. 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Bior. 4(2): 160-177.
  10. Gajić, A., and H.J. Koch. 2012. Sugar beet growth reduction caused by hydrochar is related to nitrogen supply. J. Environ. Qual. 41(4): 1067-1075.
  11. Gao, P., Y. Zhou, F. Meng, Y. Zhang, Z. Liu, W. Zhang, and G. Xue. 2016. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy. 97: 238-245.
  12. Hu, B., K. Wang, L. Wu, S.H. Yu, M. Antonietti, and M.M. Titirici. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7): 813-828.
  13. Jin, F., and H. Enomoto. 2009. Hydrothermal conversion of biomass into value-added products: technology that mimics nature. BioRes. 4(2): 704-713.
  14. Jones Jr, J.B. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press, Boca Raton, FL, USA.
  15. Kabata-pendias, A. 2010. Trace elements in soils and plants. CRC press, Boca Raton, FL, USA.
  16. Kalderis, D., M. Kotti, A. Méndez, and G. Gascó. 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth. 5(1): 477-483.
  17. Kambo, H.S., and A. Dutta. 2014. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energ. 135: 182-191.
  18. Kammann, C., S. Ratering, C. Eckhard, and C. Müller. 2012. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 41(4): 1052-1066.
  19. Kang, S., X. Li, J. Fan, and J. Chang. 2012. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Indust. Engin. Chem. Res. 51(26): 9023-9031.
  20. Libra, J.A., K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, and J. Kern. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2(1): 71-106.
  21. Liu, Z., A. Quek, and R. Balasubramanian. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Appl. Energ. 113: 1315-1322.
  22. Lusiba, S., J. Odhiambo, and J. Ogola. 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil. Sci. 63: 477-490.
  23. Meyer, S., B. Glaser, and P. Quicker. 2011. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ. Sci. Technol. 45(22): 9473-9483.
  24. Mukherjee, A., A. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 163(3): 247-255.
  25. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.
  26. Naeem, M.A., M. Khalid, M. Aon, G. Abbas, M. Amjad, B. Murtaza, W.D. Khan, and N. Ahmad. 2018. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J. Plant Nutr. 41: 112-122.
  27. Nakhshiniev, B., M.K. Biddinika, H.B. Gonzales, H. Sumida, and K. Yoshikawa. 2014. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity. Bioresource Technol. 151: 306-313.
  28. Novak, J., K. Spokas, K. Cantrell, K. Ro, D. Watts, B. Glaz, and P. Hunt. 2014. Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Manage. 30(2): 175-181.
  29. Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Methods of soil analysis. Part 2, Chemical and ‎microbiological properties. ASA-CSSA-SSSA Publisher, Madison, Wisconsin, USA.
  30. Parshetti, G.K., S. Chowdhury, and R. Balasubramanian. 2014. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresource Technol. 161: 310-319.
  31. Peterson, A.A., F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal Jr, and J.W. Tester. 2008. Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energ. Environ. Sci. 1(1): 32-65.
  32. Petrović, J., N. Perišić, J.D. Maksimović, V. Maksimović, M. Kragović, M. Stojanović, and M. Mihajlović. 2016. Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase. J. Anal. Appl. Pyrol. 118: 267-277.
  33. Poerschmann, J., B. Weiner, H. Wedwitschka, A. Zehnsdorf, R. Koehler, and F.D. Kopinke. 2015. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresource Technol. 189: 145-153.
  34. Reza, M.T., W. Becker, K. Sachsenheimer, and J. Mumme. 2014. Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determinationof selective components in HTC solid and liquid products derived from maize silage. Bioresource Technol. 161: 91-101.
  35. Reza, M.T., J.G. Lynam, M.H. Uddin, and C.J. Coronella. 2013. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenerg. 49: 86-94.
  36. Schneider, D., M. Escala, K. Supawittayayothin, and N. Tippayawong. 2011. Characterization of biochar from hydrothermal carbonization of bamboo. Int. J. Energ. Environ. 2(4): 647-652.
  37. Smith, A.M., S. Singh, and A.B. Ross. 2016. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel. 169: 135-145.
  38. Soltanpour, P.N., and A.P. Schwab. 1977. A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8(3): 195-207.
  39. Sun, Y., B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, and L. Yang. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 240: 574-578.
  40. Vozhdayev, G.V., K.A. Spokas, J.S. Molde, S.M. Heilmann, B.M. Wood, and K.J. Valentas. 2015. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil. 396(1-2): 127-136.