Effects of Crop Residues, Rice Husk Biochar, and Urea Application on Growth, Chemical Composition, and Nitrogen Use Efficiency of Spinach in a Calcareous Soil

Document Type : Research Paper

Authors

1 PhD student, Department of Soil Science, College of Agriculture, Shiraz University

2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University

Abstract

Application of N fertilizer to soil is known as an effective practice for crop yield improvement, but its inappropriate use could result in N loss, which is important from both environmental pollution and economic feasibility standpoints. Therefore, one of the great concerns lies in finding suitable methods for effective use of N fertilizers. Research on the effects of simultaneous application of biochar, resides, and nitrogen fertilizer on plants growth and chemical composition, especially N use efficiency (NUE), is very limited. In this study, an experiment was designed according to a completely randomized factorial design, in which the treatments consisted of three levels of urea (0, 100 and 200 mg N kg-1) and four levels of biochar/residue (0, 2% biochar, 2% crop residue, and 2% biochar+crop residue) with three replication. Biochar increased the uptake and concentration of N and P in spinach shoots as compared to the control, but had not effects on the uptake of Fe, Mn, Cu and Zn. Results indicated that biochar and crop residue had a positive effect on N use efficiency, especially at 100 mg kg-1 level of urea. Results also showed that co-application of biochar and residues with urea significantly improved plant wet and dry matter yield. Due to the desirable effects of biochar and residues application on plant responses and improving nitrogen use efficiency, more attention should be paid to the use of such materials in fertilizer recommendation programs. Before making recommendations, further investigations under field conditions are crucial to verify the results of the present study.

Keywords


  1. گویلی، ا.، ع. ا. موسوی و ع. ا. کامگارحقیقی. 1396. اثر بیوچار کود گاوی بر ترکیب شیمیایی اسفناج رشد یافته در وضعیت‌های رطوبتی مختلف در یک خاک آهکی. نشریه پژوهش­های خاک (علوم خاک و آب)، جلد 31،شماره 4، صفحات: 525-544.
  2. قادری, ع. م. مقدم، ل. مهدیزاده و ح. ابراهیمی. اثر سطوح مختلف نیتروژن و تراکم کاشت بر جذب عناصر غذایی نیتروژن، فسفر و پتاسیم و کارآیی مصرف و جذب نیتروژن در میوه گیاه زیره سبز. فن آوری تولیدات گیاهی (پژوهش کشاورزی)، جلد 8، شماره 2، صفحات: 153-165.
  3. Abbas, A., M.  Yaseen, M. Khalid, M. Naveed, M.Z. Aziz, Y. Hamid and M. Saleem. 2017. Effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition. Journal of Plant Nutrition, 40(16):2303-2311.
  4. Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa and  T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1-2):81-84.
  5. Baiga, R. and B.K. Rajashekhar Rao. 2017. Effects of biochar, urea and their co‐application on nitrogen mineralization in soil and growth of Chinese cabbage. Soil Use and Management, 33(1):54-61.
  6. Beretta, A. N., A. V. Silbermann, L. Paladino, D. Torres, D. Bassahun, R. Musselli and A. García-Lamohte. 2014. Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Agraria, 41(2): 263-271.
  7. Bremner, J.M. 1965. Total Nitrogen. p.1149-1178. Methods of Soil Analysis, Part 2. Chemical and  Microbiological Properties. ASA, Madison, WI.
  8. Clough, T.J., L.M. Condron, C. Kammann and C. Müller. 2013. A review of biochar and soil nitrogen dynamics. Agronomy, 3(2):275-293.
  9. FAO. 2002. Statistical database. Available at http://apps.fao.org.
  10. Hardie, M., B. Clothier, S. Bound, G. Oliver and D. Close. 2014. Does biochar influence soil physical properties and soil water availability?. Plant and Soil, 376(1-2): 347-361.
  11. Heffer, P. and M. Prud’homme. 2016, June. Fertilizer Outlook 2016–2020. In 84th IFA Annual Conference, Moscow, Russia:1-5.
  12. Huang, M., L. Yang, , H. Qin, L. Jiang and Y. Zou. 2013. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Research, 154:172-177.
  13. Ippolito, J.A., J.M. Novak, W.J. Busscher, M. Ahmedna, D. Rehrah, and D.W. Watts. 2012. Switchgrass biochar affects two Aridisols. Journal of Environmental Quality, 41(4):1123-1130.
  14. Jones, D.L., J. Rousk, G. Edwards-Jones, T.H. DeLuca and D.V. Murphy. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45:113-124.
  15. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623-1627.
  16. Lehmann, J., J.P. da Silva, C. Steiner, T. Nehls, W. Zech and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249(2):343-357.
  17. Lehmann, J., 2007. Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7):381-387.
  18. Lehmann, J., and S. Joseph. 2009. Biochar for environmental management. Science and Technology. London: Earthscan Publishing:1-12.
  19. Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper 1. Soil Science Society of America Journal, 42(3):421-428.
  20. Liu, Z., X. Cheng, D. Sun, J. Meng and W. Chen. 2017. Maize stover biochar increases urea (15 N isotope) retention in soils but does not promote its acquisition by plants during a 4-year pot experiment. Chilean Journal of Agricultural Research, 77(4):382-389.
  21. Madiba, O.F., Z.M. Solaiman, J.K. Carson and D.V. Murphy. 2016. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biology and Fertility of Soils, 52(4):439-446.
  22. Malhi, S. S., M. Nyborg and  J. T. Harapiak. 1998. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil and Tillage Research, 48(1-2): 91-101.
  23. Mukherjee, A. and R. Lal. 2014. The biochar dilemma. Soil Research, 52(3):217-230.
  24. Murphy, J.A.M.E.S. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27:31-36.
  25. Naeem, M.A., M. Khalid, M. Aon, G. Abbas, M. Tahir, M. Amjad, B. Murtaza, A. Yang and S.S. Akhtar. 2017. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 63(14):2048-2061.
  26. Nelissen, V., T. Rütting, D. Huygens, J. Staelens, G. Ruysschaert and P. Boeckx. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 55:20-27.
  27. Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. Methods of Soil Analysis, part 3.Chemical Methods. ASA, Madison, WI.
  28. Pan, G., P. Smith and W.  Pan. 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129(1-3): 344-348.
  29. Partey, S.T., K. Saito, R.F.  Preziosi and G.D. Robson. 2016. Biochar use in a legume–rice rotation system: effects on soil fertility and crop performance. Archives of Agronomy and Soil Science, 62(2):199-215.
  30. Reibe, K., C.L. Roß and F. Ellmer. 2015. Hydro-/Biochar application to sandy soils: impact on yield components and nutrients of spring wheat in pots. Archives of Agronomy and Soil Science, 61(8):1055-1060.
  31. Reverchon, F., R.C. Flicker, H. Yang, G. Yan, Z. Xu, C. Chen, S.H.  Bai and D. Zhang. 2014. Changes in δ 15 N in a soil–plant system under different biochar feedstocks and application rates. Biology and Fertility of Soils, 50(2):275-283.
  32. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. p. 417-435.Methods of Soil Analysis, Part 3.Chemical Methods, ASA, Madison, WI.
  33. Johnston, and M. E. Sumner. Madison, WI: Soil Science Society of America.
  34. Rutkowska, B., W. Szulc and J. Labetowicz. 2009. Influence of soil fertilization on concentration of microelements in soil solution of sandy soil. Journal of Elementology, 14(2):349-355.
  35. Sánchez, M.E., E. Lindao, D. Margaleff, O. Martínez and A. Morán. 2009. Pyrolysis of agricultural residues from rape andsunflowers: production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis, 85:142–144.
  36. Schimmelpfennig, S., C. Müller, L. Grünhage, C. Koch and C. Kammann. 2014. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment, 191:39-52.
  37. Singh, B. and M.S. Bajwa. 1986. Studies on urea hydrolysis in salt affected soils. Fertilizer Research, 8(3):231-240.
  38. Singh, B.P., B.J. Hatton, B. Singh, A.L. Cowie and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39(4):1224-1235.
  39. Sohi, S.P., E. Krull, E. Lopez-Capel and R. Bol. 2010. A review of biochar and its use and function in soil. In Advances in Agronomy (Vol. 105, pp. 47-82). Academic Press.
  40. Song, Y., X. Zhang, B. Ma, S.X.  Chang and J. Gong. 2014. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biology and Fertility of Soils, 50(2):321-332.
  41. Sorrenti, G., M. Ventura and M. Toselli. 2016. Effect of biochar on nutrient retention and nectarine tree performance: A three‐year field trial. Journal of Plant Nutrition and Soil Science, 179(3):336-346.
  42. Sunitha, H.M. 2006. Effect of plant population, nutrition, pinching and growth regulators on plant growth, seed yield and quality of African marigold (Tagetes erecta L.) (Doctoral dissertation, UAS, Dharwad):120.
  43. Taghizadeh-Toosi, A., T.J. Clough, L.M. Condron, R.R. Sherlock, C.R. Anderson and R.A. Craigie. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. Journal of Environmental Quality, 40(2):468-476.
  44. Tian, Y., Q. Wang, W. Zhang and L. Gao. 2016. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems. Science of the Total Environment, 544:251-261.
  45. Tipayarom D, and N.T.K. Oanh. 2007. Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region. Journal of The Science Society of Thailand. 33:339-345.
  46. Thomas, G. W. 1996. Soil pH and soil acidity, p. 475–490. Methods of Soil Analysis. Part 3. ASA, Madison, WI.
  47. Van Zwieten, L., S. Kimber, S. Morris, K.Y. Chan, A. Downie, J. Rust, S. Joseph and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2):235-246.
  48. Verma, N.K. and B.K. Pandey. 2013. Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. Global Journal of Science Frontier Research Agriculture and Veterinary Sciences, 13(3):33-38.
  49. Wang, Y., L. Zhang, H. Yang, G. Yan, Z. Xu, C. Chen and D. Zhang. 2016. Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. Journal of Soils and Sediments, 16(3):801-810.
  50. Yanai, Y., K. Toyota, and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53(2): 181-188.
  51. Zhang, H., C. Chen, E.M. Gray, S.E. Boyd, H. Yang, and D. Zhang. 2016. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma, 276:1-6.
  52. Zemanová, V., K. Břendová, D. Pavlíková, P. Kubátová and P. Tlustoš. 2017. Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil and Environment, 7:322-327.
  53. Zheng, H., Wang, Z., Deng, X., Herbert, S. and Xing, B., 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206:32-39.