Comparison of Three Geostatistics Methods for Prediction of Soil Texture Classes in Crop and Orchard Lands of Guilan Province

Document Type : Research Paper

Authors

1 Researcher, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Associate Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 Expert of soil physic laboratory, Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization, Rasht, Iran

5 Expert of soil chemistry laboratory, Rice Research Institute Of Iran (RRII), Agricultural Research, Education and Extension Organization, Rasht, Iran

6 Researcher Instructor, Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization, Rasht, Iran

7 Expert of personal laboratory, Rasht, Iran

8 Tea Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization, (AREEO), Lahijan, Iran

9 Assistant Prof., Tea Research Center, Horticultural Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran

Abstract

Soil texture is a static soil property that has great effects on soil physico-chemical properties. Therefore, global demands are increasing for a high spatial resolution map of soil texture. Lack of intrinsic soil data can lead to wrong policies regarding management and degradation of soil and water resources. Iran has many scattered soil data that have been collected at great cost. These data can be useful in a wide range of applications if presented accurately in digital map format. In this study, Ordinary Kriging, Pixel-Based Classification (PBC), and Inverse Distance Weighted (IDW) methods were investigated using 4665 soil surface samples collected from croplands and orchards to map Guilan soil texture groups (fine, medium and coarse) and soil mineral particles. MBE, NRMSE, KIA, R2 and Pa statistics were used for verification. The results indicated that IDW could provide higher accuracy for clay (R2 = 0.64 and NRMSE = 0.22) and sand (R2 = 0.67 and NRMSE = 0.25) particles prediction, but PBC had higher accuracy for predicting fine, medium and coarse soil texture groups according to KIA and Pa of 0.46 and 0.73, respectively. However, superiority of PBC was minor (KIA = 0.43 and Pa = 0.71) compared to Ordinary Kriging. PBC used auxiliary soil data as inputs for Artificial Neural Network to predict soil mineral particles of unvisited pixels. For more certainty regarding efficiency of PBC in predicting soil texture groups, it is recommended to test the mentioned methods in areas with more physiographic diversity. 

Keywords


  1. دلبری، م و م، شهریاری. 1395. بررسی تغییرات مکانی برخی خصوصیات فیزیکی و شیمیایی خاک منطقه سیستان. دومین کنگره ملی آبیاری و زهکشی ایران، اصفهان.
  2. زینالی، م، جعفرزاده، ع، ا، شهبازی، ف و ش، اوستان. 1395. ارزیابی شوری خاک سطحی باروش پیکسل مبنا براساس داده های سنجنده TM مطالعه موردی: اراضی شرق شهرستان خوی- استان آذربایجان غربی. مجله اطلاعات جغرافیایی. 25 (99): 127-139.
  3. نوروزیان عزیزی، ز، م، قاجار سپانلو، عماری، س، م و ف، صادق­زاده. 1396. ارزیابی مدل­های رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران. مجله پژوهش­های خاک. 31(1): 75-87.
  4. Bakker, A. 2012. Soil texture mapping on a regional scale with remote sensing data. Sl: sn.
  5. Buckman, H. O, and N.C. Brady. 1960. The Nature and Properties of Soils. New York: Macmillan.
  6. Bieganowski, A., and M. Ryżak. 2011. Soil Texture: Measurement Methods. In: Encyclopedia of Agrophysics Springer Netherlands, pp: 791–794.
  7. Bouma, J., J. Stoorvogel, B. J. van Alphen,and H. W. G. Booltink. 1999. Pedology, precision agriculture, and the changing paradigm of agricultural research. Soil Sci Soc Am J, 63:1763–1768. https://doi. org/10.2136/sssaj1999.6361763x
  8. Chen, T., R. Niu, Y. Wang, P. Li, L. Zhang, and B. Du. 2011. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques. Environmental Monitoring and Assessment, 179: 605-617.
  9. De Wit, A. J. W., and G. P. W. Clevers. 2004. Efficiency and accuracy of per-field classification for operational crop mapping. International Journal of Remote Sensing, 25 (20): 4091-4112.
  10. Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis,Part 1. 2th ed. pp. 383-411.  Madison, WI, ASA/SSSA.
  11. Gooverats, P. 1997. Geostatistics for natural resources evaluation. Oxford university press, New York.
  12. Haykin, S. 1999. Neural Computing, second ed. Prentice Hall, Princeton, NJ.
  13. Hengel, T., N. Toomanian, I. R. Hannes,and M. J. Malakouti. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140:417-427.
  14. He, Y., Y. Wei, R. DePauw, B. Qian, R. Lemke, A. Singh, R. Cuthbert, B. McConkey, and H. Wang. 2013. Spring wheat yield in the semiarid Canadian prairies: Effects of precipitation timing and soil texture over recent 30 years. Field Crop. Res, 149: 329–337.
  15. Gozdowski, D., M. Stępień, S. Samborski, E. S. Dobers, J. Szatyłowicz, and J. Chormański. 2014. Determination of the most relevant soil properties for the delineation of management zones in production felds. Commun Soil Sci Plan, 45(17): 2289-2304.
  16. Jamieson, P. D., J. R. Porter, and D. R. Wilson. 1991. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New ZealandField Crops Research, 27: 337–350.
  17.  Jafari, A., P. A. Finke, J. Vande Wauw, S. Ayoubi, and H. Khademi. 2012. Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: Comparing logestic regression approaches to predict diagnostic horizons and soil types. Eur. J. Soil Sci, 63: 284-298.
  18. Kravchenko, A., and D.G. Bullock. 1999. A comparative study of interpolationmethods for mapping soil properties. Agron J, 91: 393-400.
  19. Landis J.R., and G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics: 33:159-174.
  20. Liao, K., S. Xu, J. Wu, and Q. Zhu. 2013. Spatial estimation of surface soil texture using remote sensing data. Soil science and plant nutrition, 59(4): 488-500.
  21. Paterson, S., B. Minasny, and A. Mc Barteny. 2018. Spatial variability of Australian soil texture: A multiscale analysis. Geoderma, 309: 60-74.
  22. Merdun, H., O. Cinar, R. Meral, and M. Apan. 2006. Comparison of artificial neural network of soil water retension and saturated hydraulic conductivity. Soil and Tillage Research, 90: 108-116.
  23. Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube. 2004. Modeling of the daily rainfall runoff relationship with artificial neural network. J. Hydrol, 285 (1-4): 96-113.
  24. Reichardt, R., and L. C. Timm. 2004. Solo planta atmosfera: conceitos, processos e aplicações. Manole, Barueri, E-Book, pp: 478.
  25. Shirazi, M. A., Boresma, and C. Burch Johnson. 2001. Particle size distributions: Comparing texture systems, adding rock and predicting soil properties. Soil Sci. Soc. Am J, 6S: 300-310.
  26. Song, Y. Q., L. A. Yang, b. Li, Y. M. Hu, A. L. Wang, W. Zhou, X. S. Cui, and Y. L. Liu. 2017. Spatial prediction of soil organic matter using a hybrid geostatistical model of an extreme learning machine and ordinary kriging. Sustainability, 9, 754; doi:10.3390/su9050754.
  27. Sun, B., Z. Shenglu, and Z. Qigou. 2003.Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115:85-99.
  28. Taghizadeh-Mehrjardi, R., S. Ayoubi, Z. Namazi, B. P. Malone, A. A. Zolfaghari, and  F. R. Sadrabadi. 2016. Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30 (1): 44-64.
  29. Wang, D. C., G. L. Zhang, M. S. Zhao, X. Z. Pan, Y. G. Zhao, D. C. Li, and B. Macmillan. 2015. Retrieval and mapping of soil texture based on land surface diurnal temperature range data from MODIS. PloS one, 10(6): e0129977.
  30. Zaeri, K., S. Hazbavi, N. Toomanian, and J. T. Zadeh. 2013. Creating surface soil texture map with indicator kriging technique: A case study of central Iran soils. International Journal of Agriculture and Crop Sciences, 6(9): 518-521.
  31. Zhang, S. W., C. Y. Shen, X. Y. Chen, H. C. Ye, Y. F. Huang, and S. Lai. 2013. Spatial interpolation of soil texture using compositional kriging and regression kriging with consideration of the characteristics of compositional data and environmental variables. Journal of integrative agriculture, 12 (9): 1673-1683.
  32. Zheng, Z., F. Zhang, X. Chai, Z. Zhu, and F. Ma. 2009. Spatial estimation of soil moisture and salinity with neural kriging. In IFIP International federation for information processing, Volume 294, Computer and Computing Technologies in Agriculture ɪɪ, Volome 2, eds. D. Li, Z. Chunjiangv (Boston:Springer), pp: 1227-1237.
  33. Walvoort, D. J., and J. J. de Gruijter. 2001. Compositional kriging: a spatial interpolation method for compositional data. Mathematical Geology, 33(8), 951-966.