Evaluation of the Efficiency of Sinusoidal Model for Estimating Surface Soil Temperature in Some Different Climates

Document Type : Research Paper

Authors

1 M.Sc graduated student of Yazd University, National Salinity Research Center (NSRC)

2 Associate Professor, ADRI, Yazd University

3 Associate Professor, Yazd University

Abstract

Temperature is an important soil physical parameter and could control soil physical and chemical processes as well as the growth and yield of crops. The aim of the present study was to use the sinusoidal model for predicting soil temperature in four selected synoptic stations with different climate, namely, Bandar Abbas, Rasht, Shahrekord, and Yazd stations. Soil surface (5 cm) daily temperature was collected during ten years period i.e. 1998 to 2007.For modeling, data set was divided into two parts: 70% for training and 30% forvalidation. To eliminate the effects of local climate variations on modeling process, data set of 1998 to 2002, 2004 to 2005 and 2007 were chosen for modeling. Daily data set of 2000, 2003 and 2006 were used for model evaluation. Two input parameters of sinusoidal model including mean and annual ranges of temperature were calculated using arithmetic mean, minimum, and maximum temperatures of the data set.Validation indices including RMSE, MBE, MPE, d, and R2 calculated for the four stations were, on average, 2.64, -0.16, 10.84, 0.59, and 0.93, respectively. The result of sinusoidal modeling showed that the model efficiency decreased for Bandar Abbas, Yazd, Shahrekord, and Rasht stations, respectively.

Keywords


  1. بای­بوردی، م. 1372. فیزیک خاک کاربردی، انتشارات دانشگاه تهران،671 ص.
  2. بهیار، م. ب. 1380. پیش­بینی دمای حداقل خاک و روش­های مبارزه با یخبندان و سرمازدگی در استان چهار محال و بختیاری، پژوهشگاه هواشناسی و علوم جو.
  3. ثنائی­نژاد، ح.، ادیب عباسی، م.، موسوی بایگی، م. و حیدری گندمان، م. ط. 1387. بررسی رژیم دمایی هوا و اعماق خاک و تعیین توابع نوسانات ادواری آنها در ایستگاه­های استان کردستان، مجله علوم و صنایع کشاورزی، ویژه آب و خاک، 25-23: 22.
  4. جعفری گلستان، م. رائینی سراج، م. و ضیاء تبار احمدی، م. 1386. برآورد دمای ژرفای خاک با بهره­گیری از روش تجزیه منحنی و همبستگی­های رگرسیونی برای شهر ساری، مجله علوم کشاورزی و منابع طبیعی، ویژه نامه زراعت و اصلاح نباتات: 123-112: (5)14.   
  5. عباسی، ا. 1385. بررسی روابط بین رژیم دمایی اعماق خاک با دمای هوا (اسکرین) و تعیین عمق یخبندان در استان کردستان، پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
  6. قائمی­نیا، ع. م.، عظیم­زاده، ح. ر. و مبین، م. ح. 1390. شبیه سازی تغییرات دمای اعماق مختلف خاک و بررسی برخی عامل های جوی تأثیرگذار بر آن، مجله تحقیقات مرتع و بیابان ایران، 57-42: (1)18.
  7. مسعودیان، ا و کاویانی، م. ر. 1387. اقلیم­شناسی ایران، انتشارات دانشگاه صنعتی اصفهان، 179 ص.
  8. Adjepong, S. K. and Gupta-Afriyi, K. 1977. Analysis and time series of soil temperature as recorded at different depths at three locations in Ghana. In: Greenland, D. J., Lal, R. (Eds.), Soil Conservation and Management in the Humid Tropics. New York: Wiley
  9. Covell, S., Ellis, R. H., Roberts, E. H. and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Expert Botany. 37, 705–715.
  10. Chang, J. 1957. Global distribution of the annual range in the soil temperature, transactions, American Geophysical Union, 38: 718-723.
  11. Ellis, R. H., Covell, S., Roberts, E. H. and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Expert Botany, 37, 1503–1515.
  12. Garcia-Huidobro, J. L., Monteith, L. and Squire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Expert Botany, 33, 288–296.
  13. Gao, Z., Bian, L., Wang, L. and Fan, J., 2007. Determination of soil temperature in an arid region, Journal of Arid Environments, 71: 157-168.
  14. Ghuman B.S. and Lal, R. 1981. Predicting diurnal temperature regimes of the central Appalachins, Soil Science, 132: 274-252.
  15. Ghuman B.S. and Lal, R. 1982. Temperature regime of a tropical soil in relation to surface condition and air temperature and its fourier analysis, Journal of Soil Science, 134, 133-140.
  16. Maclean, S. F. and Ayres, M. P. 1985. Estimation of soil temperature from climatic variables at Barrow, Alaska, USA, Arctic and Alpine Research, 17: 425-432.
  17. Mavi, H. S. and Tupper, G. J. 2004. Agrometeorology: Principles and Applications of Climate Studies in Agriculture, Haworth press, Translated in Farsi by G.A. Mozafari, Nikpendar press, 518 pp.
  18. Mihalakakau, G. 2001. On estimating soil surface temperature profiles, Energy and Building, 34: 251-259.
  19. Mohamed, H. A., Clark, J.A. and Ong, C. K. 1988. Genotypic differences in the temperature responses of tropical crops. I. Germination characteristics of groundnut (Arachis hypogaea L.) and pearl millet (Pennisetum typhoides S. & H.). Journal of Expert Botany. 39, 1121–1128.
  20. Tenge A. J., Kaihura, F.B., Lal, S. R. and Singh, B. R. 1998. Diurnal soil temperature fluctuations for different erosion classes of an oxisol at Mlingano, Tanzania. Soil and Tillage Research. 49, 211-217.
  21. Thundholm, B. 1990. A comparison of measured and simulated soil temperatures using air temperature and soil surface energy balance as boundary conditions. Agriculture forest meteorology, 53, 59-72.
  22. Washitani, I. 1985. Germination-rate dependency on temperature of Geranium carolinium seeds. Journal of Expert Botany, 36, 330– 337.
  23. Washitani, I. and Saeki, T. 1986. Germination responses of Pinus densiflora seeds to temperature, light and interrupted imbibition. Journal of Expert Botany, 37, 1376–1387.
  24. 24. Willmott, C. J. 1981. On the validation of models, Physical Geography, 2, 184-194.