Influence of Rice-Husk Derived Biochar and Growth Promoting Rhizobacteria on the Yield and Chemical Composition of Spinach in Soil under Salinity Stress

Document Type : Research Paper

Authors

1 M Sc. Graduate, Department of Soil Science, College of Agriculture, Shiraz University

2 Professor, Department of Soil Science, College of Agriculture, Shiraz University

3 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University

Abstract

In order to investigate the effects of application of sodium chloride, organic matter, and growth promoting bacteria on fresh and dry shoot weights and also concentration of some nutrients in aerial parts of spinach, a factorial experiment was conducted in a completely randomized design with three replications.  The treatments consisted of three levels of sodium chloride (control (S0), 2 (S2) and 4 (S4) g Na Cl kg-1 soil equivalent to 0.7, 8 and 16.8 dS/m, respectively), five levels of organic matter (control 0%(OM0), 0.5% (RS0.5) and 1% (RS1) % rice husk and 0.5% (Bi0.5) and 1% (Bi1) % rice husk biochar, w/w)  and two bacterial levels i.e. without (P0) and with bacteria (P1). Results showed that increasing salinity levels significantly increased spinach dry weight, but significantly decreased concentrations of N, P, Ca and Mg in aerial part, while concentration of Na increased. With the use of organic matter sources, fresh and dry weights of spinach shoot and con fluorescence [H1] centration of all nutrients increased significantly. Also, addition of Pseudomonas fluorescence significantly increased fresh and dry weights and concentration of nutrients of spinach aerial part .According to the results obtained in this study, it can be concluded that the use of organic matter as a soil amendment and rich source of nutrients can greatly increase concentration of nutrients in spinach. Also, addition of Pseudomonas fluorescence as a biofertilizer can improve spinach growth and increase concentration of some nutrients in spinach aerial part under salinity conditions. Application of organic matter and bacteria in salinity-free conditions increased concentration of nutrient and yield of plant. In general, further investigations under field conditions are necessary to verify the results of the present study.



 [H1]?

Keywords


  1. اسدی، ر.، رضایی، ر. و امیری، ا. ۱۳۸۸. تأثیر سطوح مختلف شوری بر عملکرد و اجزای عملکرد ارقام اصلاح شده برنج. پژوهشنامه اصلاح گیاهان زراعی. سال اول. شماره سوم پائیز، 24-37.
  2. حمزئی، ا.، لکزیان، ا،. آستارایی، ع. و فتوت، ا. 1391. تأثیر بیوچار و فاضلاب بر غلظت کادمیوم قابل جذب و رشد گیاه ماش. مجموعه مقالات سومین همایش ملی جامع مدیریت جامع منابع آب. 20 و 21 شهریور ماه، ساری.
  3. سقفی، د.، علیخانی، ح. و متشرع زاده، ب. 1392. اثر باکتری­های محرک رشد گیاه بر بهبود شرایط تغذیه­ای کلزا تحت تنش شوری. نشریه دانش آب و خاک. جلد 23. شماره 4. صفحه 159-176.
  4. شیخی، ج. و رونقی، ع. 1392. اثر شوری و کاربرد ورمی کمپوست بر غلظت عناصر غذایی و عملکرد اسفناج (رقم ویروفلی) در یک خاک آهکی. علوم و فنون کشت­های گلخانه­ای. سال 4. شماره 13. صفحه 81- 92.
  5. کردوانی، پ. 1368. جغرافیای خاک­ها. انتشارات دانشگاه تهران. صفحه 257-357.
  6. مظاهری، د. و مجنون حسینی، ن. ۱۳۸۲. مبانی زراعت عمومی. چاپ سوم. انتشارات  دانشگاه تهران. ۳۲ صفحه.
  7. ملکوتی، م.ج. و طباطبایی، س.1387. تغذیه مناسب درختان میوه برای بهبود عملکرد و کیفیت محصولات باغبانی در ایران. انتشارات آموزش کشاورزی. کرج. ایران.
  8. مهدی­زاده، ل.، مقدم، م. و لکزیان، ا. 1396. اثر بیوچار بر ویژگی­های رشدی مرزه تابستانه تحت تنش شوری. کنفرانس بین المللی علوم کشاورزی، گیاهان دارویی و طب سنتی. مشهد. ایران.
  9. یزدانی بیوکی، ر.، رضوانی مقدم، پ.، کوچکی، ع.، امیری، م.ب.، فلاحی، ج. و دیهیم فرد، ر. (1389). اثرات تغذیه نیتروژنی متفاوت گندم (Tritium aestivum L.) رقم سایونز بر شاخص‌های جوانه‌زنی و رشد گیاهچه تحت‌تأثیر سطوح تنش خشکی و کود‌های بیولوژیک. نشریه بوم­شناسی کشاورزی. 2(2)، 266-276.
  10. Ardakani, M. R., Mazaheri, D., Rad, A. S, and Mafakheri, S. 2011. Uptake of micronutrients by wheat (Triticum aestivum L.) in a sustainable agroecosystem. Middle-East Journal Science Research, 7(4): 444-451.‏
  11. Bano, A, and Fatima, M. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and fertility of Soils, 45(4): 405-413.
  12. Banchio, E., Bogino, P. C., Zygadlo, J, and Giordano, W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochemical Systematics and Ecology, 36(10): 766-771.
  13. Bremner, J. M., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabian, M. A., Johnston, C. T, and Sumner, M. E. 1996. Nitrogen-total. Methods of Soil Analysis. Part 3-Chemical Methods., 1085-1121.
  14. Chapman, H. D, and Pratt, P. F. 1962. Methods of Analysis for Soils, Plants and Waters. Soil Science, 93(1): 60-62.
  15. Chen, J., Zhu, D, and Sun, C. 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environmental Science & Technology, 41(7): 2536-2541.
  16. FAO, 2010, Available on URL: http:/www.fao.org
  17. Gaskin, J. W., Steiner, C., Harris, K., Das, K. C, and Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use.
  18. Gee, G. W., Bauder, J. W, and Klute, A. 1986. Particle-size analysis. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 383-411.
  19. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2): 109-117.‏
  20. Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils. 35(4): 219-230.
  21. Grant, C., Bittman, S., Montreal, M., Plenchette, C, and Morel, C. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1): 3-14.
  22. Grattan, S. R, and Grieve, C. M. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1): 127-157.‏
  23. Greenway, H, and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1): 149-190.‏
  24. Hoflich, G., E. Tappe, G. Khun and W. Wiehe. 1997. Einflux associative Rhizospharen bakterien auf die.ahrstoffaufnahme und den Ertrag von Mais. Archiv fuer Acker- und Pflanzenbau und Bodenkunde 1: 323–333.
  25. Inal, A., Gunes, A., Sahin, O., Taskin, M. B, and Kaya, E. C. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil use and Management, 31(1): 106-113.‏
  26. Ipek, M., Pirlak, L., Esitken, A., Figen Dönmez, M., Turan, M, and Sahin, F. (2014). Plant Growth-Promoting Rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. Journal of Plant Nutrition, 37(7): 990-1001.‏
  27. Jalili F, Khavazi K and Asadi Rahmani H. 2011. Effects of Fluorescent Pseudomonads with ACC deaminase activity on growth characteristics of canola (Brassica napus L.) under salinity condition. Soil and Water Research, 21(2): 175-187. (in Farsi with English Summary).
  28. Karlidag, H., Esitken, A., Yildirim, E., Donmez, M. F, and Turan, M. 2011. Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. Journal of Plant Nutrition, 34(1): 34-45.‏
  29. Kanwal, S., N. Ilyas, S. Shabir, M. Saeed, R. Gul, M. Zahoor, N. Batool, and R. Mazhar. 2018. Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition. 41(4): 526-538.
  30. Kavino, M., Harish, S., Kumar, N., Saravanakumar, D, and Samiyappan, R. 2010. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Applied Soil Cology, 45(2): 71-77.‏
  31. Kaya, C., Higgs, D, and Sakar, E. 2002. Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. Journal of Plant Nutrition, 25(12): 2663-2676.
  32. Kookana, R.S., A.K. Sarmah, L. van Zwieten, E. Krull, and B. Singh. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy. 112: 103-143.
  33. Knudsen, D., Peterson, G. A, and Pratt, P. F. 1982. Lithium, sodium, and potassium. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soil an2), 225-246
  34. Lehmann, J, and Joseph, S. 2009. Biochar for environmental management: science and technology. Earthscan, London & Sterling, VA.
  35. Lindsay, W. L, and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America journal, 42(3): 421-428.
  36. Marschner, H. and J. V. Possingham. 1975. Effect of K+ and Na+ on growth of leaf discs of sugar beet and spinach. Z. Pflanzenphysiol. 75: 6-16.
  37. Mass, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. ASCE, J. Irr. Drain. Div. 103(2): 115-134.
  38. Mayak S, Tirosh T and Glick BR, 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry. 42:565-572.
  39. Nelson, D. W, and Sommers, L. 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soilan 2), 539-579.
  40. Olsen, S. R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circuiar 939, US Gov.Printing Office, Washington, DC.
  41. Rietz, D. N, and Haynes, R. J. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6): 845-854.‏
  42. Shady, M. a., I. Ibrahim, and A. H. Afify. 1984. Mobilization of elements and their effects on certain plant growth characteristics as influenced by some silicate bacteria. 27(7), 17-30.
  43. Shaharoona B, Jamro GM, Zahir ZA, Arshad M and Memon KS, 2007 . Effectiveness of various Pseudomonas spp. and Burkhaldaria caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). Journal of Microbiology and Biotechnology 17: 1300–1307.
  44. Shannon, M. C., Grieve, C. M., Lesch, S. M, and Draper, J. H. (2000). Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125(5): 658-664.
  45. Shibli, R. A., Shatnawi, M. A, and Swaidat, I. Q. 2003. Growth, osmotic adjustment, and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Communications in Soil Science and Plant Analysis, 34(13-14): 1969-1979.
  46. Shilev, S., Sancho, D.E, and Benlloch-Gonzalez, M. 2010. Rhizosphericm bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 3: 1-5.
  47. Sohi, S., Lopez-Capel, E., Krull, E, and Bol, R. 2009. Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 5(09): 17-31.
  48. Thomas, G. W., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N, and Sumner, M. E. 1996. Soil pH and soil acidity. Methods of Soil Analysis. Part 3-Chemical Methods., 475-490.
  49. Yao, L., Wu, Z., Zheng, Y., Kaleem, I. and Li, C. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology.46: 49-54.
  50. Yousif, B. S., N. T. Nguyen, Y. Fukuda, H. Hakata, Y. Okamoto, Y. Masaoka and H. Saneoka. 2010. Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops: New Zealand Spinach (Tetragonia tetragonioides) and Water Spinach (Ipomoea aquatic). International Journal Agriculture Biology. 12: 211-216
  51. Zhang, H. J., Dong, H. Z., Li, W. J, and Zhang, D. M. 2011. Effects of soil salinity and plant density on yield and leaf senescence of field‐grown cotton. Journal of Agronomy and Crop Science, 198(1): 27-37.‏