Document Type : Research Paper
Authors
1
Associate Professo, Soil and Water Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
2
Plant Nutrition SuperPlant Nutrition Supervisor, Jihad-e-Agriculture of Khorasan Razavi, Mashhad, Iranvisor
Abstract
Nitrogen use efficiency (NUE) is a critically important indicator for judging the wise use of N fertilizer in crops. It can be affected by management factors or soil properties. This study was conducted to estimate NUE in wheat based on large scale fields (20 wheat farms) trials and determining the role of soil factors, in Khorasan Razavi province. Two levels of N as urea (0 and conventional) were applied in each of the fields. In the fields, grain yield (conventional) was divided into low yield population (LYP, GY< 5 Mg ha-1) and high yield population (HYP, GY ≥ 5 Mg ha-1) categories. Then, apparent recovery efficiency (ARE), physiological efficiency (PE), agronomic efficiency (AE) and Partial Factor Productivity (PFP) were calculated for N in both yield populations. The results showed that nitrogen efficiency indices in both yield populations were much lower than optimum level. However, AE (8.2 kg/kg), ARE (25%), and PFP (46 kg /kg) in the HYP were more than in the LYP, but there was no difference between PE in both yield populations. There was a significant correlation between AE and soil organic carbon (r = -0.97, P <0.01, also ARE with soil organic carbon (r = -0.82, P<0.05) and soil clay content (r = 0.68, P <0.05) for LYP in contrast to the HYP). While PFP exhibited positive correlation with soil organic carbon (r = 0.86, P <0.01) and negative correlation with soil electrical conductivity (r = -0.77, P <0.05) for LYP, this relationship was weaker with soil organic carbon in HYP. None of soil factors had a significant effect on PE. These results show that soil factors such as organic carbon, salinity, and clay content of soil had a decisive role in AE, ARE, and PFP in the LYP. In contrast, soil factors had no effect on nitrogen efficiency indices in the HYP (with the exception of the effect of soil organic carbon on PFP).
Keywords