Mapping Soil Particle Size and Organic Matter Distribution in Different Land Uses in Bardeh Watershed (Chaharmahal and Bakhtiari Province) Using Remote Sensing and Geostatistics Techniques

Document Type : Research Paper

Authors

1 MSc student, Dept. of Soil Science and Engineering, Shahrekord University

2 Assistant Professor, Dept. of Soil Science and Engineering, Shahrekord University

3 Professor, Dept. of Soil Science and Engineering, Shahrekord University

4 Associate Professor, Dept. of Soil Science and Engineering, Shahrekord University

Abstract

Soil is one of the natural and capital resources of each country that should be seriously considered in land-use planning at national and local scales.   The purpose of this study was to investigate the effect of land use on organic matter content and soil particle size distribution in Bardeh watershed. To fulfil the objective, 140 composite and random surficial soil samples were taken from a depth of 0-5 and 0-20 cm. Geostatistical analysis of the spatial structure of soil characteristics showed that their distributions followedan exponential model and had medium to intermediate spatial dependencies. The results also showed that there were significant Pearson correlation coefficients between reflection in visible, infrared, and thermal bands with soil texture components. In order to map different variables, the interpolation and zoning were done by Kriging method. The maps of different soil properties showed that the distribution pattern of organic matter and particle size distribution were mainly due to the variability of soil inherent factors (such as soil material) and partly by management practices (such as soil management). Lastly, using Landsat 8 images, the soil properties were compared with radiation, reflection and degree. Radiation heat was investigated using regression models. The results showed that at the two depths of sampling 0-5 and 0-20 cm, and in different applications, the coefficient of variation did not show a significant difference.  Correlation coefficients showed that the strongest relationship existed between the percentage of organic matter, clay, silt, sand, with the reflection in the visible light range and near infrared and the long-wave infrared panchromatic wavelength of the electromagnetic spectrum. Comparison of the power of correlation between the bands reflection and the percentage of organic matter in the section (NIR) shows greater correlation. Validation showed that the maps obtained by geostatistics and remote sensing well characterized the distribution of features.

Keywords


  1. فاریابی، ز.، اسفندیارپور بروجنی، ع. شکفته، ح. و شیرانی، ح. 1394. مقایسه­ی پهنه­بندی زمین­آماری و مرسوم در تعیین تغییرات برخی از ویژگی‏های خاک سطحی (مطالعه موردی: ساردوئیه، شهرستان جیرفت). چهاردهمین کنگره علوم خاک ایران. دانشگاه ولی‎عصر(عج) رفسنجان. 16 تا 18 شهریور.
  2. کلکلی، م.، کریمی، ع. حق نیا، غ. و اسفندیارپور، ع. مقایسه زمین‎آماری و مرسوم در تعیین برخی ویژگی‌های خاک سطحی (مطالعه موردی: جیرفت، استان کرمان). 1393. نشریه آب‎وخاک، علوم و صنایع کشاورزی. ۲۸(۲): 364 -353.
  3. محمـدی ج. 1385. جلـد دوم: پدومتری، آمار مـکانی (ژئـواستاتیستیک). انتشارات پلک. تهران.
  4. محمدی فارسانی ن. کریمی ا. محمدی ج و نادری م. ۱۳۹۶. تغییرات ماده آلی و آهک خاک در کاربری‎ها و بافت‎های مختلف اراضی در حوضه بارده، شهرکرد (استان چهارمحال و بختیاری). پانزدهمین کنگره علوم خاک ایران. دانشگاه صنعتی اصفهان. 6 تا 8 شهریور.
  5. محمدی فارسانی ن. کریمی ا. محمدی ج و نادری م. ۱۳۹۶. بررسی تغییرات توزیع اندازه­ای ذرات خاک در کاربری­های مختلف اراضی و بافت­های مختلف در حوضه بارده، شهرکرد (استان چهارمحال و بختیاری). پانزدهمین کنگره علوم خاک ایران. دانشگاه صنعتی اصفهان. 6 تا 8 شهریور.
  6. ملکوتی م. ج. 1384. نگرشی بر حاصلخیزی خاک­های ایران. انتشارات سنا.
  7. هاشمی، م. غلامعلی زاده آهنگر، ا. بامری، ا. سارانی، ف. حجازی زاده، ا. 1395. شناسایی و پهنه‌بندی خصـوصیات فـیزیکی و شیمیایی خاک با استفاده از روش‌های زمـین‌آمـاری در GIS (مورد مطالعاتی: مـنطقه میانکنگی؛ سیـستان). نشـریه آب‎وخـاک. دانشـگاه فردوسـی مشـهد.30(2): 443 تا 458.
  8. Bogunovic, I., P. Pereira and E. Brevik. 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci Total J. Environ.
  9. 9.Casa, R., A. Palombo and S. Pignatti. 2013. A Comparison of Sensor Resolution and Calibration Strategies for Soil Texture Estimation from Hyperspectral RemoteSensing. Geoderma. 197:17-26.
  10. Chander, G. and B. markham. 2003. Revissed Landsat-5 TM Radiometric calibration procedures and postcalibration dynamic ranges. IEEET ransaction on Geosciences and remote sensing 41.
  11. Dixson, W.J., and Massey S.J. 1985. Introduction to statistical analysis, 4th edition. Mc Graw Hill book Company, New York.
  12. Diaz-Zorita, M., J. H Grove and E, Perfect. 2007. Sievin/g duration and sieve loading impacts on dry soil fragment sizedistributions. Soil Till Res. 94: 15-20.  
  13. Gaffey, S.J. 1987. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 μm): Anhydrous carbonate minerals. J Geophys Res. 92:1429-1440.
  14. Gomez, C., V. Rossel and B. McBratney. 2012. Regional prredictions of eight common soil propertises and their spatial structures from hyperspectral VIS-NIR data. Geoderma. 198:176-185.
  15. He, Y. M., A. Huang, A. Garcia, Hernandez and H. Song. 2007. Prediction of soil macronutrients content using near-infrared spectroscopy. Comput Electron Agr. 58:144-153.
  16. Jiachun, S., W. Haizen, X.  Jianming, W. Jianjum, L. Xindmei, Z. Haiping and Y. Chunlan. 2007. Spatial distiribution of hevey metalsin soil: a case study of chngxing, china. Environ Geol. 52:1-10.
  17. Kamali, A., F. Sarmadian and S. Mahmoudi. 2012. Land suitability mobility for sustainable agriculture using MicroLEISDSS and remote sensing in an arid region of Iran. Elixir Agri. 42: 6516-6519.
  18. Markham, B., L. and J.,L. Barker. 1987. Thematic maper bandpass solar exoatmospheric irradiances. Int J Rem Sens. pp: 517-523.
  19. Meteorological site of Chaharmahal and Bakhtiari province. 2017. [on line]. Available at https://www.chaharmahalmet.ir/. [verified 23 Apr. 2017]. IRAN-Chaharmahal and Bakhtiari province.
  20.  Ming, S., Liang, Y and Sun, B. 2011. Research on sensitivity for soil erosion evaluation frim DEM and remot sensing data source of different map. Environ Sci. (10):1753-1760.
  21. Mohamed, A.E., A. AbdelRahmana, C.A. Natarajanb Srinivasamurthy, H. Rajendra. 2016. Estimating soil fertility status in physically degraded land using GIS and remote sensing techniques in Chamarajanagar district, Karnataka, India. The Egyptian J. RS and Sci. 19:95-108.
  22. Rasela, S. M. M., T.A. Groenb, Y.A. Hussinb, I.J. Ditic. 2017. Proxies for soil organic carbon derived from remote sensing. In J. of Applied Earth Observation and Geoinformation. 59:157-166.
  23. Skaggs, T.H., L.M. Arya, P.J. Shouse and BP, Mohanty. 2001. Estimating particle size distribution from limited soil texture data. Soil Sci Soc Am J. 65: 1038-1044. 
  24. Schmid, T., A. Palacios-Orueta, S. Chabrillat, E. Bendor and A. Plaza. 2012. Spectral characteristis of land surface composition to detemination soil erosion within semiarid ranifed cultivated areas. LGARSS 2012:7082-7084.
  25. StatiSoft Inc. 2007. STATISTICA.(data analysis software system)
  26. U. S. Geological Survey. 2016. [on line]. Available at https://www.usgs.gov/. [verified 6 Apr. 2017].  USA.
  27. Walkley, A. and I.A. Black. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. Exp Soil Sci. 79:459-465.
  28. Yang, Q., W. Luo, W. Li. Jiang D. and Yuan. 2016b. Improve the prediction ofsoil bulk density by CoKriging with predicted soil water content as auxiliaryvariable. Soils Sedi J. 16(1):77-84.
  29. Zong-Ming, W., Z. Bai, S. Kai-Shan, L. Dian-Wei and R. Chun-Ying. 2010. Spatial variability of soil organic carbon under maize monoculture in the Song-Nen plain. Northeast China. Pedosphere. 20: 80-89.
  30. Zhang, X.C., and D. McGrath. 2004. Geostatistical and GIS analyses on soil organic carbonconcentrations ingrassland of southeastern Ireland from two different periods. Geoderma. 119: 261-275.