Influence of Growth Promoting Rhizobacteria and Organic Matter on the Concentration of Micronutrients of Spinach in a Calcareous Soil Affected by Salinity

Document Type : Research Paper

Authors

1 PhD Student, Department of Soil Science, College of Agriculture, Lorestan University

2 Professor, Department of Soil Science, College of Agriculture, Shiraz University

3 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University

Abstract

In order to investigate the effect of sodium chloride application, organic matter sources and growth promoting bacteria on fresh and dry matter yield and concentration of micro nutrients in shoot of spinach, a factorial experiment was conducted in a completely randomized design with three replications. The treatments were sodium chloride (control (S0), 2 (S2) and 4 (S4) g Na Cl kg-1 soil), organic matter (control (OM0), 0.5% and 1.0 % rice husk and 0.5% and 1.0 % rice husk biochar, w/w)  and PGPR bacteria (without and with bacteria). Results showed that application of 2 and 4 g salt kg-1 of soil slightly increased iron concentration of aerial part, while Cu concentration increased by 48.10% and 48.32%, respectively. However, Zn and Mn concentrations decreased. Plant yield was not affected by salinity, probably due to the osmotic adjustment resulting from gradual increase in salt addition. Application of organic matter sources increased spinach fresh and dry weight, and Fe, Zn, Cu and Mn concentrations. Inoculation with Pseudomonas fluorescence significantly increased fresh and dry weight as well as Fe, Zn, Cu, and Mn concentrations in aerial part, compared with the related control (without bacteria(. In conclusion, spinach (cv Virofly) very well tolerated gradual addition of salinity; and application of organic matter with growth promoting bacteria increased micronutrients concentration and growth of spinach in a calcareous soil affected by salinity. 

Keywords


  1. خوشخوی م، شیبانیو ب، روحانی ا و تفضلی ع، 1370. اصول باغبانی، انتشارات دانشگاه شیراز
  2. ﺧﻮﺷﮕﻔﺘﺎﺭﻣﻨﺶ ﺍ و ﺳﻴﺎﺩﺕ ح ، ١٣٨١ . ﺗﻐﺬﻳﻪ ﻣﻌﺪﻧﻲ ﺳﺒﺰﻳﺠﺎﺕ ﻭ ﻣﺤﺼﻮﻻﺕ ﺑﺎﻏﻲ ﺩﺭ ﺷـﺮﺍﻳﻂ ﺷـﻮﺭ. ﺍﻧﺘـﺸﺎﺭﺍﺕ ﻣﻌﺎﻭﻧـﺖ ﺍﻣـﻮﺭ باغبانی، چاپ اول، صفحه­های60 تا 65.
  3. مظاهری د و مجنون حسینی ن، ۱۳۸۲. مبانی زراعت عمومی. چاپ سوم،انتشارات دانشگاه تهران، ۳۲ صفحه.
  4. همایی م، 1381. واکنش گیاهان به شوری. چاپ اول، انتشارات کمیته ملی آبیاری و زهکشی ایران، شماره 58.،تهران، ایران.
  5. سقفی د علیخانی ح و متشرع­زاده ب،1392. اثر باکتری­های ریزوبیومی محرک رشد گیاه بر بهبود شرایط تغذیه­ای کلزا (.Brassica napus L) تحت تنش شوری. دانش آب و خاک، دوره 23، شماره 4، صفحه­های 159 تا 175.
  6. شیخی ج و رونقی ع، 1392. اثر شوری و کاربرد ورمی­کمپوست بر غلظت عناصر غذایی و عملکرد اسفناج (رقم ویروفلی) در یک خاک آهکی. علوم و فنون کشت­های گلخانه­ای، سال 4، شماره 13، صفحه­های 81 تا 92.
  7. صفرزاده ص رونقی ع غلامی ع و زاهدی فرم، 1389. اثر شوری و نیتروژن بر کیفیت میوه و غلظت عناصر کم مصرف گوجه فرنگی درکشت هیدروپونیک. مجله علوم و فنون کشت­های گلخانه­ای، دوره 1، شماره 3، صفحه­های 11 تا 22.
  8. Ahmad MSA, Javed F, Javed S and Alvi AK, 2009. Relationship between callus growth and mineral Nutrients uptake in salt-stressed Indica rice callus. Journal of Plant Nutrition 32: 382-394.
  9. Altomare C, Norvell WA, Björkman T and Harman GE, 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65: 2926-2933.
  10. Anahita Khosravi, Mehdi Zarei and Abdolmajid Ronaghi ,2018. Effect of PGPR, Phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil, Journal of Plant Nutrition, 41:1, 80-89
  11. Barber DA and Lee R B, 1974. The effect Of Micro‐organism on the absorpthion of manganese by plants. New Phytologist 73: 97-106.
  12. Bremner JM, Sparks DL, Page A L, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabian MA, Johnston CT and Sumner ME, 1996. Nitrogen-total. Methods of Soil Analysis. Part 3-Chemical Methods 1085-1121.
  13. Chapman HD and Pratt PF, 1962. Methods of Analysis for Soils, Plants and Waters. Soil Science 93: 60-62.
  14. Ertürk Y, Çakmakçi R, Duyar Ö and Turan M, 2011. The Effects of plant growth rromotion rhizobacteria on vegetative growth and Leaf Nutrient Contents of Hazelnut Seedlings (Turkish hazelnut cv, Tombul and Sivri). International Journal of Soil Science  6: 188.
  15. Gee G W, Bauder JW and Klute A, 1986. Particle-size analysis. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods 383-411.
  16. Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41(2), 109-117.
  17. Grattan SR. and Grieve CM, 1999. Salinity-mineral nutrient relations in horticultural crops. Soil science Hort 78: 127-157.
  18. Inal A, Gunes A, Sahin O, Taskin MB and Kaya EC, 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil use and Management 31: 106-113.‏
  19. Izzo R, Navari‐Izzo F and Quartacci MF, 1991. Growth and mineralabsorption in maize seedlings as affected by increasing NaCl concentrations.Journal of Plant Nutrition 14: 687-699.
  20. Khan MS, Zaidi A, Wani PA and Oves M, 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 7: 1-19
  21. Knudsen D, Peterson GA and Pratt PF, 1982. Lithium, sodium, and potassium. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soil an2) 225-246.
  22. Lehmann J, da Silva Jr, J P, Steiner C, Nehls T, Zech W and Glaser B, 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249: 343-357.
  23. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM and putida under gnotobioticconditions. Canadian Journal of Microbiology 33: 390-395.
  24. Lindsay WL and Norvell WA, 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America journal 42: 421-428.
  25. Mass, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. ASCE, J. Irr. Drain. Div. 103(2): 115-134.
  26. Nelson DW and Sommers L, 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methods of soilan 2) 539-579.
  27. Olsen SR, 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate
  28. Thomas GW, Sparks DL, Page A, Helmke PA, Loeppert RH, Soltanpour PN and Sumner ME, 1996. Soil pH and soil acidity. Methods of Soil Analysis. Part 3-Chemical Methods 475-490.
  29. Page AL, Chang AC and Adriano DC, 1990. Deficiencies and toxicities of trace elements. Agricultural Salinity Assessment and Management, Chapter 7, ASCE Manuals and Reports on Eng. Practice, ASCE71: 138-160.
  30. Penrose M and Glick R, 2003. Methods for isolating and characterizing ACC deaminasecontaining plant growth-promoting rhizobacteria. Physiology of Plant 118: 10-15.
  31. Ravanbakhsh MH, 2016. Bioremediation of heavy metals by bacteria and fungi isolated from lead and zinc polluted locations. Ph.D. Dissertation in Soil Science, Shiraz University, Iran.
  32. Rhoades JD, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN and Sumner, M. E, 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis. Part 3-Chemical Methods 417-435.
  33. Russo A, Felici C, Toffanin A, Gotz M, Collados C, Barea J.M, Moenne-Loccoz Y, Smalla K, Vanderleyden J and Nuti M, 2005. Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biology and Fertility of Soils 41: 301-309.
  34. Sheikhi J and Ronaghi A, 2012. Growth and macro and micronutrients concentration in spinach (Spinacia oleracea L.) as influenced by salinity and nitrogen rates. International Research Journal. Of Applied and Basic Sciences 3: 770-777.‏
  35. Shirmardi M, Savaghebi G.R, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F and Sadat A, 2010. Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Notulae Scientia Biologicae  2: 57-66.
  36. Singh B, Singh BP and Cowie AL, 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48: 516-525
  37. Sohi S, Lopez-Capel E, Krull E and Bol  R, 2009. Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 5: 17-31.
  38. Tariq M, Hameed S, Malik KA and Hafeez FY, 2007. Plant root associated bacteria for zinc mobilization in rice. Pakistan Journal of Botany 39: 245.
  39. Tavallali V, Rahemi M, Maftoun M, Panahi B, Karimi S, Ramezanian A and Vaezpour M,  2009. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae 123: 272-279.‏
  40. Vı́llora G, Moreno DA, Pulgar G and Romero L, 2000. Yield improvement in zucchini under salt stress: determining micronutrient balance. ScientiaHorticulturae 86: 175-183.
  41. Yao L, Wu Z, Zheng Y, Kaleem I and Li C, 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology 46: 49-54.‏
  42. Yildirim E, Turan ME and Donmez MF, 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett 13: 3933-3943.‏
  43. Zuazo VD, Raya AM, Ruiz JA and Tarifa DF, 2004. Impact of salinity on macro-and micronutrients uptake in mango (Mangifera indica L. cv. Osteen) with different rootstocks. Spanish Journal of Agricultural Research 2: 121-133.‏