Investigating the Ability of Landsat 8 and Sentinel 2A Satellite Images for Estimating Soil Organic Matter and Available Phosphorus in Semnan Plain

Document Type : Research Paper

Authors

1 MSc of Agrometeorology, Faculty of Desert Science, Semnan University

2 Assistant Professor, Dep. of Desertification, Faculty of Desert Science; Semnan University

3 Associate Professor, Dep. of Desertification, Faculty of Desert Science; Semnan University

4 Department of Soil Science Engineering, Faculty of Agriculture, University of Tehran

Abstract

Identification of soil quality changes, including soil organic matter (SOM), is one of the most important usages of remote sensing and geographical information system. Available phosphorus is also an important nutrient for optimal growth of plants. The purposes of this study were to investigate the capability of satellite images data and to compare the accuracy of SOM and available phosphorus maps by using Landsat 8 and Sentinel 2A satellite images. The location of sampling points was determined by using conditional Latin hypercube sampling for 84 soil samples in agricultural lands of Semnan plain. The SOM content, the particle size fractions including sand, clay, and silt were measured using wet oxidation and hydrometer methods, respectively, and available phosphorus was measured by the Olsen method. The auxiliary variables included the bands and combination of bands. The results showed that soil available phosphorus had the highest correlation with SOM content. Results of Random Forest algorithm indicated that axillary variables derived from multi-spectral instruments (Sentinel 2A satellite) evaluated the amount of SOM and available phosphorus more accurately than the axillary variables extracted by Landsat 8 satellite images. The random forest nonlinear method estimated the amounts ​​of SOM and available phosphorus with low error values ​​and a relatively high coefficient of determination. The root means square error (RMSE) and coefficient of determination (R2) for prediction of SOM were 0.413 and 0.758 for the multi-spectral instrument, and 0.432 and 0.736 for the operational land imager, respectively. Also, the RMSE and R2 for prediction of available phosphorus were 5.96 and 0.74, for the multi-spectral instrument, and 7.24 and 0.56 for the operational land imager, respectively.

Keywords


  1. جمشیدی، م.، ا. دلاور، م. تقی­زاده مهرجردی.، ر.ک. او برانگارد. 1398. ارزیابی روش‌های نقشه‌برداری رقومی در تهیه نقشه سه‌بعدی ماده آلی خاک، نشریه پژوهش‌های خاک (علوم خاک و آب)، الف، جلد 32، شماره 2.
  2. Arshad, M.A., and S. Martin. 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment. 88: 2. 153-160.
  3. Babaei, F., A.A. Zolfaghari, M.R. Yazdani, and A. Sadeghipour, 2018 Spatial analysis of infiltration in agricultural lands in arid areas of Iran. Catena 170 25-35.
  4. Ballabio, C. 2009. Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma, 151, 338–350.
  5. Boettinger, J.L., R.D. Ramsey, J.M. Bodily, N.J. Cole, S. Kienast-Brown, S.J. Nield, A.M. Saunders, and A.K. Stum. 2008. Landsat spectral data for digital soil mapping. In: Hartemink, A.E., A.B. McBratney, and M.L. Mendonca-Santos (Eds.), Digital Soil Mapping with Limited Data. Springer Science, Australia, pp. 193–203.
  6. Camera, C., Z. Zomeni, J.S. Noller, A.M. Zissimos, I.C. Christoforou, and A. Bruggeman. 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma. 285:35-49.
  7. Chastain, R., I. Housman, J. Goldstein, M. Finco, and K. Tenneson. 2019. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States.RemoteSensingof Environment 221, 274-285.
  8. Cheng, Y., P. Li, G. Xu, Z. Li, K. Yu, S. Cheng, B. Zhao, and F. Wang. 2018. Factors that influence soil total phosphorus sources on dam fields that are part of ecological construction programs on the Loess Plateau, China. Catena 171:107–114.
  9. Gee, G.W., J.W. Bauder, and A. Klute. 1986. Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods. 383-411.
  10. Goel, E., and E.R. Abhilasha. 2017. Random Forest: A Review. International Journal of Advanced Research in Computer Science and Software Engineering. Volume.7, Issue 1.DOI: 10.23956/ijarcsse/V7I1/01113
  11. Heung, B., C.E. Bulmer., and M.G. Schmidt. 2014. Predictive soil parent materialmapping at a regional-scale: a random forest approach. Geoderma. 214:141-154.
  12. Heung, B., H.C. Ho., J. Zhang., A. Knudby, C.E. Bulmer., and M.G. Schmidt. 2016. Anoverview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265:62-77.
  13. Jeong, G, H. Oeverdieck, S.J. Park, B. Huwe, and M.  Ließ. 2017. Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain. Catena, 154: 73-84.
  14. Kampichler, C.H., R. Wieland, S. Calmé, H. Weissenberger, and S. Arriaga-Weiss. 2010. Classification in conservation biology: A comparison of five machine-learning methods. Ecological Informatics, 5, 441-450.
  15. Knox, N.M., S. Grunwald, M.L. McDowell, G.L. Bruland, D.B. Myers, and W.G. Harris. 2015. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma, 239-240:229–239.
  16. Lagacherie, P., A.B. McBratney, and M. Voltz, 2007. Digital soil mapping: an introductory perspective. Elsevier.
  17. Liao, K., S. Xu, J. Wu, and Q. Zhu. 2013. Spatial estimation of surface soil texture using remote sensing data. Soil science and plant nutrition, 59(4), 488-500.
  18. Lombardo, L., S. Saia, C. Schillaci, P.M. Mai, and R. Huser. 2018. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks. Geoderma, 318: 148-159.
  19. Mesdaghi, M. 2005. Plant Ecology, Jehad Daneshgahi of Mashhad, pp: 184 (In Persian).
  20. Metternicht, G.I., and J.A. Zinck. 2003. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85: 1-20.
  21. Minasny, B., and A.B. McBratney. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and geosciences, 32 (9), 1378-1388.
  22. Nield, S.J., J.L. Boettinger, and R.D. Ramsey. 2007. Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data, Soil Sci. Soc. Am. J. 71:245-252, doi: 10.2136/sssaj2006-0049.
  23. Olsen, S.R., and Sommers, L.E. 1982. Phosphorus. p. 403-430. In A.L. Page et al. (ed.) Methods of Soil Analysis, Part 2 Chemical and Biological Properties, Soil Science Society of America, Madison, Wisconsin.
  24. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with NaHCO3, USDA Cir.939. U.S. Washington.
  25. Pahlavan Rad, M.R., N. Toomanian, F. Khormali, C.W. Brungard, C. Bayram Komaki, and P. Bogaert. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232(97-106), 232-234.
  26. Raeesi, M., A.A. Zolfaghari, M.R. Yazdani, M. Gorji, and M. Sabetizade. 2019. Prediction of soil organic matter using an inexpensive colour sensor in arid and semiarid areas of Iran, Soli Research, 57(3), 276-286. https://doi.org/10.1071/SR18323.
  27. Riala, M., A. Martínez Cortizasa, and L. Rodríguez-Ladoa. 2015. A novel approach to map soil organic carbon content using spectroscopic and environmental data. Procedia  Environmental  Sciences, 27: 49–52.
  28. Rossel, R.A.V., J. Bouma. 2016. Soil sensing: A new paradigm for agriculture. Agric. Syst.148, 71–74.
  29. Rouse, J.W., R.H. Haas, D.W. Deering, and J.A. Sehell. 1974. Monitoring the vernal advancement and retro gradation (Green wave effect) of natural vegetation. Final Rep. RSC 1978-4, Remote Sensing Center, Texas A&M Univ., College Station.
  30. Schillaci, C., M. Acutis, L. Lombardo, A. Lipani, M. Fantappiè, M. Märker, and S. Saia. 2017a. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 601, 821–832.
  31. Singh, V., H.M. Agrawal, G.C. Joshi, M. Sudershan, and A.K. Sinha. 2011. Elemental profile of agricultural soil by the EDXRF technique and use of the Principal Component Analysis (PCA) method to interpret the complex data. Applied Radiation and Isotopes 69: 969–974.
  32. Taghizadeh-Mehrjardi, R., B. Minasny, F. Sarmadian, and B.P. Malone. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213:15-28.
  33. Taghizadeh-Mehrjardi, R., K. Nabiollahi, and R. Kerry. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110.
  34. Vaysse, K. and P. Lagacherie. 2015. Evaluating digital soil mapping approaches for mapping Global Soil Map soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20–30.
  35. Vitousek, P.M., S. Porder, B.Z. Houlton. and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15.
  36. Walkley, A., and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 37:29-38.
  37. Zhang, H., P. Wu, A. Yin, X. Yang, M. Zhang, and C.H. Gao. 2017. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the total Environment, J.592: 704-713.